用Delone集逼近的一个测度理论结果

M. Baake, A. Haynes
{"title":"用Delone集逼近的一个测度理论结果","authors":"M. Baake, A. Haynes","doi":"10.1090/conm/731/14671","DOIUrl":null,"url":null,"abstract":"With a view to establishing measure theoretic approximation properties of Delone sets, we study a setup which arises naturally in the problem of averaging almost periodic functions along exponential sequences. In this setting, we establish a full converse of the Borel-Cantelli lemma. This provides an analogue of more classical problems in the metric theory of Diophantine approximation, but with the distance to the nearest integer function replaced by distance to an arbitrary Delone set.","PeriodicalId":431279,"journal":{"name":"Horizons of Fractal Geometry and Complex\n Dimensions","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A measure-theoretic result for approximation\\n by Delone sets\",\"authors\":\"M. Baake, A. Haynes\",\"doi\":\"10.1090/conm/731/14671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With a view to establishing measure theoretic approximation properties of Delone sets, we study a setup which arises naturally in the problem of averaging almost periodic functions along exponential sequences. In this setting, we establish a full converse of the Borel-Cantelli lemma. This provides an analogue of more classical problems in the metric theory of Diophantine approximation, but with the distance to the nearest integer function replaced by distance to an arbitrary Delone set.\",\"PeriodicalId\":431279,\"journal\":{\"name\":\"Horizons of Fractal Geometry and Complex\\n Dimensions\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horizons of Fractal Geometry and Complex\\n Dimensions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/conm/731/14671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horizons of Fractal Geometry and Complex\n Dimensions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/731/14671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了建立Delone集的测度理论逼近性质,我们研究了沿指数序列求概周期函数平均问题中一个自然出现的建立。在这种情况下,我们建立了Borel-Cantelli引理的完全逆引理。这为丢芬图近似的度量理论中更经典的问题提供了一个类比,但是用到最近整数函数的距离替换为到任意Delone集的距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A measure-theoretic result for approximation by Delone sets
With a view to establishing measure theoretic approximation properties of Delone sets, we study a setup which arises naturally in the problem of averaging almost periodic functions along exponential sequences. In this setting, we establish a full converse of the Borel-Cantelli lemma. This provides an analogue of more classical problems in the metric theory of Diophantine approximation, but with the distance to the nearest integer function replaced by distance to an arbitrary Delone set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信