关于对称排序的注释

Zoran vSkoda
{"title":"关于对称排序的注释","authors":"Zoran vSkoda","doi":"10.32817/AMS.1.1.5","DOIUrl":null,"url":null,"abstract":"Let A^n be the completion by the degree of a differential operator of the n-th Weyl algebra with generators x1,…,xn,∂1,…,∂n. Consider n elements X1,…,Xn in A^n of the formXi=xi+∑K=1∞∑l=1n∑j=1nxlpijK−1,l(∂)∂j,where pijK−1,l(∂) is a degree (K−1) homogeneous polynomial in ∂1,…,∂n, antisymmetric in subscripts i,j. Then for any natural k and any function i:{1,…,k}→{1,…,n} we prove∑σ∈Σ(k)Xiσ(1)⋯Xiσ(k)▹1=k!xi1⋯xik,where Σ(k) is the symmetric group on k letters and ▹ denotes the Fock action of the A^n on the space of (commutative) polynomials.","PeriodicalId":309225,"journal":{"name":"Acta mathematica Spalatensia","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A note on symmetric orderings\",\"authors\":\"Zoran vSkoda\",\"doi\":\"10.32817/AMS.1.1.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let A^n be the completion by the degree of a differential operator of the n-th Weyl algebra with generators x1,…,xn,∂1,…,∂n. Consider n elements X1,…,Xn in A^n of the formXi=xi+∑K=1∞∑l=1n∑j=1nxlpijK−1,l(∂)∂j,where pijK−1,l(∂) is a degree (K−1) homogeneous polynomial in ∂1,…,∂n, antisymmetric in subscripts i,j. Then for any natural k and any function i:{1,…,k}→{1,…,n} we prove∑σ∈Σ(k)Xiσ(1)⋯Xiσ(k)▹1=k!xi1⋯xik,where Σ(k) is the symmetric group on k letters and ▹ denotes the Fock action of the A^n on the space of (commutative) polynomials.\",\"PeriodicalId\":309225,\"journal\":{\"name\":\"Acta mathematica Spalatensia\",\"volume\":\"141 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta mathematica Spalatensia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32817/AMS.1.1.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta mathematica Spalatensia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32817/AMS.1.1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设A^n是第n个Weyl代数的微分算子的度补全,其生成器为x1,…,xn,∂1,…,∂n。考虑A^n中的n个元素X1,…,Xn,形式为xi =xi+∑K=1∞∑l=1n∑j=1nxlpijK−1,l(∂)∂j,其中pijK−1,l(∂)是∂1,…,∂n中的一个次(K−1)齐次多项式,下标i,j反对称。xi1⋯xik,其中Σ(k)是k个字母上的对称群,并且表示A^n在(交换)多项式空间上的Fock作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on symmetric orderings
Let A^n be the completion by the degree of a differential operator of the n-th Weyl algebra with generators x1,…,xn,∂1,…,∂n. Consider n elements X1,…,Xn in A^n of the formXi=xi+∑K=1∞∑l=1n∑j=1nxlpijK−1,l(∂)∂j,where pijK−1,l(∂) is a degree (K−1) homogeneous polynomial in ∂1,…,∂n, antisymmetric in subscripts i,j. Then for any natural k and any function i:{1,…,k}→{1,…,n} we prove∑σ∈Σ(k)Xiσ(1)⋯Xiσ(k)▹1=k!xi1⋯xik,where Σ(k) is the symmetric group on k letters and ▹ denotes the Fock action of the A^n on the space of (commutative) polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信