散点图中用户交互行为的马尔科夫模型

Emily Wall, Arup Arcalgud, Kuhu Gupta, Andrew Jo
{"title":"散点图中用户交互行为的马尔科夫模型","authors":"Emily Wall, Arup Arcalgud, Kuhu Gupta, Andrew Jo","doi":"10.1109/VISUAL.2019.8933779","DOIUrl":null,"url":null,"abstract":"Recently, Wall et al. proposed a set of computational metrics for quantifying cognitive bias based on user interaction sequences. The metrics rely on a Markov model to predict a user’s next interaction based on the current interaction. The metrics characterize how a user’s actual interactive behavior deviates from a theoretical baseline, where \"unbiased behavior\" was previously defined to be equal probabilities of all interactions. In this paper, we analyze the assumptions made of these metrics. We conduct a study in which participants, subject to anchoring bias, interact with a scatterplot to complete a categorization task. Our results indicate that, rather than equal probabilities of all interactions, unbiased behavior across both bias conditions can be better approximated by proximity of data points.","PeriodicalId":192801,"journal":{"name":"2019 IEEE Visualization Conference (VIS)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A Markov Model of Users’ Interactive Behavior in Scatterplots\",\"authors\":\"Emily Wall, Arup Arcalgud, Kuhu Gupta, Andrew Jo\",\"doi\":\"10.1109/VISUAL.2019.8933779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, Wall et al. proposed a set of computational metrics for quantifying cognitive bias based on user interaction sequences. The metrics rely on a Markov model to predict a user’s next interaction based on the current interaction. The metrics characterize how a user’s actual interactive behavior deviates from a theoretical baseline, where \\\"unbiased behavior\\\" was previously defined to be equal probabilities of all interactions. In this paper, we analyze the assumptions made of these metrics. We conduct a study in which participants, subject to anchoring bias, interact with a scatterplot to complete a categorization task. Our results indicate that, rather than equal probabilities of all interactions, unbiased behavior across both bias conditions can be better approximated by proximity of data points.\",\"PeriodicalId\":192801,\"journal\":{\"name\":\"2019 IEEE Visualization Conference (VIS)\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Visualization Conference (VIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VISUAL.2019.8933779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Visualization Conference (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2019.8933779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

最近,Wall等人提出了一套基于用户交互序列的量化认知偏差的计算指标。这些指标依赖于一个马尔可夫模型,根据当前的交互来预测用户的下一次交互。这些指标描述了用户的实际交互行为如何偏离理论基线,在理论基线中,“无偏行为”之前被定义为所有交互的概率相等。在本文中,我们分析了这些指标所做的假设。我们进行了一项研究,在该研究中,受锚定偏差影响的参与者与散点图相互作用以完成分类任务。我们的结果表明,不是所有相互作用的概率相等,两种偏差条件下的无偏行为可以通过数据点的接近性更好地近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Markov Model of Users’ Interactive Behavior in Scatterplots
Recently, Wall et al. proposed a set of computational metrics for quantifying cognitive bias based on user interaction sequences. The metrics rely on a Markov model to predict a user’s next interaction based on the current interaction. The metrics characterize how a user’s actual interactive behavior deviates from a theoretical baseline, where "unbiased behavior" was previously defined to be equal probabilities of all interactions. In this paper, we analyze the assumptions made of these metrics. We conduct a study in which participants, subject to anchoring bias, interact with a scatterplot to complete a categorization task. Our results indicate that, rather than equal probabilities of all interactions, unbiased behavior across both bias conditions can be better approximated by proximity of data points.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信