阵列处理中有限样本累积量的协方差

T. Kaiser, J. Mendel
{"title":"阵列处理中有限样本累积量的协方差","authors":"T. Kaiser, J. Mendel","doi":"10.1109/HOST.1997.613536","DOIUrl":null,"url":null,"abstract":"In this paper we provide explicit formulas for the covariances of second-third-, and fourth-order sample cumulants as used in narrowband array processing. These covariances provide a basis for analysing the performance of cumulant based algorithms for finite-sample length, which is in contrast to usual asymptotic performance analyses. The use of these formulas, which consist of several thousand terms, will be demonstrated, and a rough idea of their applicability to a performance analysis for finite numbers of samples will be given.","PeriodicalId":305928,"journal":{"name":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Covariance of finite-sample cumulants in array-processing\",\"authors\":\"T. Kaiser, J. Mendel\",\"doi\":\"10.1109/HOST.1997.613536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we provide explicit formulas for the covariances of second-third-, and fourth-order sample cumulants as used in narrowband array processing. These covariances provide a basis for analysing the performance of cumulant based algorithms for finite-sample length, which is in contrast to usual asymptotic performance analyses. The use of these formulas, which consist of several thousand terms, will be demonstrated, and a rough idea of their applicability to a performance analysis for finite numbers of samples will be given.\",\"PeriodicalId\":305928,\"journal\":{\"name\":\"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HOST.1997.613536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1997.613536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文给出了用于窄带阵列处理的二阶、三阶和四阶样本累积量协方差的显式公式。这些协方差为分析基于累积量的有限样本长度算法的性能提供了基础,这与通常的渐近性能分析形成了对比。这些由数千项组成的公式的使用将被演示,并将给出它们对有限数量样本的性能分析的适用性的大致概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Covariance of finite-sample cumulants in array-processing
In this paper we provide explicit formulas for the covariances of second-third-, and fourth-order sample cumulants as used in narrowband array processing. These covariances provide a basis for analysing the performance of cumulant based algorithms for finite-sample length, which is in contrast to usual asymptotic performance analyses. The use of these formulas, which consist of several thousand terms, will be demonstrated, and a rough idea of their applicability to a performance analysis for finite numbers of samples will be given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信