离散时间随机奇异系统的非零和对策

Hai-ying Zhou
{"title":"离散时间随机奇异系统的非零和对策","authors":"Hai-ying Zhou","doi":"10.1109/CCDC.2018.8407366","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of nonzero-sum games for discrete-time stochastic singular systems governed by Ito-type equation in finite-time horizon is discussed. Firstly, the problem is formulated, based on the problem, the particular case of nonzero-sum games — one-player case is discussed, then, the strategies for discrete-time stochastic singular systems are derived by extending the obtained result to two-player case. The existence of the strategies is presented by means of a set of cross-coupled Riccati algebraic equationsand also the optimal control strategies are given.","PeriodicalId":409960,"journal":{"name":"2018 Chinese Control And Decision Conference (CCDC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The nonzero-sum games of discrete-time stochastic singular systems\",\"authors\":\"Hai-ying Zhou\",\"doi\":\"10.1109/CCDC.2018.8407366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the problem of nonzero-sum games for discrete-time stochastic singular systems governed by Ito-type equation in finite-time horizon is discussed. Firstly, the problem is formulated, based on the problem, the particular case of nonzero-sum games — one-player case is discussed, then, the strategies for discrete-time stochastic singular systems are derived by extending the obtained result to two-player case. The existence of the strategies is presented by means of a set of cross-coupled Riccati algebraic equationsand also the optimal control strategies are given.\",\"PeriodicalId\":409960,\"journal\":{\"name\":\"2018 Chinese Control And Decision Conference (CCDC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Chinese Control And Decision Conference (CCDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC.2018.8407366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Chinese Control And Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2018.8407366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

讨论了有限时间范围内由ito型方程控制的离散随机奇异系统的非零和对策问题。首先给出了问题的形式,在此基础上讨论了非零和博弈的特殊情况——一人博弈的情况,然后将所得结果推广到两人博弈的情况,导出了离散时间随机奇异系统的策略。利用一组交叉耦合Riccati代数方程证明了策略的存在性,并给出了最优控制策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The nonzero-sum games of discrete-time stochastic singular systems
In this paper, the problem of nonzero-sum games for discrete-time stochastic singular systems governed by Ito-type equation in finite-time horizon is discussed. Firstly, the problem is formulated, based on the problem, the particular case of nonzero-sum games — one-player case is discussed, then, the strategies for discrete-time stochastic singular systems are derived by extending the obtained result to two-player case. The existence of the strategies is presented by means of a set of cross-coupled Riccati algebraic equationsand also the optimal control strategies are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信