超大型潮流问题并行解的重叠受限加性schwarz预处理评价

S. Abhyankar, Barry F. Smith, E. Constantinescu
{"title":"超大型潮流问题并行解的重叠受限加性schwarz预处理评价","authors":"S. Abhyankar, Barry F. Smith, E. Constantinescu","doi":"10.1145/2536780.2536784","DOIUrl":null,"url":null,"abstract":"The computational bottleneck for large nonlinear AC power flow problems using Newton's method is the solution of the linear system at each iteration. We present a parallel linear solution scheme using the Krylov subspace-based iterative solver GMRES preconditioned with overlapping restricted additive Schwarz method (RASM) that shows promising speedup for this linear system solution. This paper evaluates the performance of RASM with different amounts of overlap and presents its scalability and convergence behavior for three large power flow problems consisting of 22,996, 51,741, and 91,984 buses respectively.","PeriodicalId":153844,"journal":{"name":"HiPCNA-PG '13","volume":"386 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Evaluation of overlapping restricted additive schwarz preconditioning for parallel solution of very large power flow problems\",\"authors\":\"S. Abhyankar, Barry F. Smith, E. Constantinescu\",\"doi\":\"10.1145/2536780.2536784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The computational bottleneck for large nonlinear AC power flow problems using Newton's method is the solution of the linear system at each iteration. We present a parallel linear solution scheme using the Krylov subspace-based iterative solver GMRES preconditioned with overlapping restricted additive Schwarz method (RASM) that shows promising speedup for this linear system solution. This paper evaluates the performance of RASM with different amounts of overlap and presents its scalability and convergence behavior for three large power flow problems consisting of 22,996, 51,741, and 91,984 buses respectively.\",\"PeriodicalId\":153844,\"journal\":{\"name\":\"HiPCNA-PG '13\",\"volume\":\"386 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HiPCNA-PG '13\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2536780.2536784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HiPCNA-PG '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2536780.2536784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

用牛顿法求解大型非线性交流潮流问题的计算瓶颈是每次迭代求解线性系统。本文提出了一种基于Krylov子空间的迭代求解器GMRES的并行线性解方案,该方案采用重叠限制加性Schwarz方法(RASM)进行预处理,对该线性系统解显示出良好的加速效果。本文评价了RASM在不同重叠量下的性能,并分别针对22,996、51,741和91,984母线的三种大型潮流问题展示了其可扩展性和收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of overlapping restricted additive schwarz preconditioning for parallel solution of very large power flow problems
The computational bottleneck for large nonlinear AC power flow problems using Newton's method is the solution of the linear system at each iteration. We present a parallel linear solution scheme using the Krylov subspace-based iterative solver GMRES preconditioned with overlapping restricted additive Schwarz method (RASM) that shows promising speedup for this linear system solution. This paper evaluates the performance of RASM with different amounts of overlap and presents its scalability and convergence behavior for three large power flow problems consisting of 22,996, 51,741, and 91,984 buses respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信