基于k均值聚类的软件测量数据离群点检测方法

Kyung-A Yoon, Oh-Sung Kwon, Doo-Hwan Bae
{"title":"基于k均值聚类的软件测量数据离群点检测方法","authors":"Kyung-A Yoon, Oh-Sung Kwon, Doo-Hwan Bae","doi":"10.1109/ESEM.2007.49","DOIUrl":null,"url":null,"abstract":"The quality of software measurement data affects the accuracy of project manager's decision making using estimation or prediction models and the understanding of real project status. During the software measurement implementation, the outlier which reduces the data quality is collected, however its detection is not easy. To cope with this problem, we propose an approach to outlier detection of software measurement data using the k-means clustering method in this work.","PeriodicalId":124420,"journal":{"name":"First International Symposium on Empirical Software Engineering and Measurement (ESEM 2007)","volume":"211 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An Approach to Outlier Detection of Software Measurement Data using the K-means Clustering Method\",\"authors\":\"Kyung-A Yoon, Oh-Sung Kwon, Doo-Hwan Bae\",\"doi\":\"10.1109/ESEM.2007.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quality of software measurement data affects the accuracy of project manager's decision making using estimation or prediction models and the understanding of real project status. During the software measurement implementation, the outlier which reduces the data quality is collected, however its detection is not easy. To cope with this problem, we propose an approach to outlier detection of software measurement data using the k-means clustering method in this work.\",\"PeriodicalId\":124420,\"journal\":{\"name\":\"First International Symposium on Empirical Software Engineering and Measurement (ESEM 2007)\",\"volume\":\"211 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First International Symposium on Empirical Software Engineering and Measurement (ESEM 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESEM.2007.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Symposium on Empirical Software Engineering and Measurement (ESEM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESEM.2007.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

软件测量数据的质量影响到项目经理使用估算或预测模型进行决策的准确性,以及对实际项目状态的理解。在软件测量过程中,会收集到降低数据质量的异常值,但异常值的检测并不容易。为了解决这一问题,本文提出了一种基于k-means聚类方法的软件测量数据离群值检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Approach to Outlier Detection of Software Measurement Data using the K-means Clustering Method
The quality of software measurement data affects the accuracy of project manager's decision making using estimation or prediction models and the understanding of real project status. During the software measurement implementation, the outlier which reduces the data quality is collected, however its detection is not easy. To cope with this problem, we propose an approach to outlier detection of software measurement data using the k-means clustering method in this work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信