强制:分类数据的分布式聚类算法

Bin Wang, Yang Zhou, Xinhong Hei
{"title":"强制:分类数据的分布式聚类算法","authors":"Bin Wang, Yang Zhou, Xinhong Hei","doi":"10.1109/CIS.2013.149","DOIUrl":null,"url":null,"abstract":"Clustering is an important technology in data mining. Squeezer is one such clustering algorithm for categorical data and it is more efficient than most existing algorithms for categorical data. But Squeezer is time consuming for very large datasets which are distributed in different servers. Thus, we employ the distributed thinking to improve Squeezer and a distributed algorithm for categorical data called Coercion is proposed in this paper. In order to present detailed complexity results for Coercion, we also conduct an experimental study with standard as well as synthetic data sets to demonstrate the effectiveness of the new algorithm.","PeriodicalId":294223,"journal":{"name":"2013 Ninth International Conference on Computational Intelligence and Security","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Coercion: A Distributed Clustering Algorithm for Categorical Data\",\"authors\":\"Bin Wang, Yang Zhou, Xinhong Hei\",\"doi\":\"10.1109/CIS.2013.149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering is an important technology in data mining. Squeezer is one such clustering algorithm for categorical data and it is more efficient than most existing algorithms for categorical data. But Squeezer is time consuming for very large datasets which are distributed in different servers. Thus, we employ the distributed thinking to improve Squeezer and a distributed algorithm for categorical data called Coercion is proposed in this paper. In order to present detailed complexity results for Coercion, we also conduct an experimental study with standard as well as synthetic data sets to demonstrate the effectiveness of the new algorithm.\",\"PeriodicalId\":294223,\"journal\":{\"name\":\"2013 Ninth International Conference on Computational Intelligence and Security\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Ninth International Conference on Computational Intelligence and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2013.149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Ninth International Conference on Computational Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2013.149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

聚类是数据挖掘中的一项重要技术。Squeezer算法就是这样一种分类数据聚类算法,它比大多数现有的分类数据聚类算法都要高效。但是对于分布在不同服务器上的大型数据集来说,Squeezer非常耗时。因此,我们采用分布式思维对Squeezer进行改进,并提出了一种分类数据的分布式强制算法。为了提供详细的强制复杂性结果,我们还使用标准和合成数据集进行了实验研究,以证明新算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coercion: A Distributed Clustering Algorithm for Categorical Data
Clustering is an important technology in data mining. Squeezer is one such clustering algorithm for categorical data and it is more efficient than most existing algorithms for categorical data. But Squeezer is time consuming for very large datasets which are distributed in different servers. Thus, we employ the distributed thinking to improve Squeezer and a distributed algorithm for categorical data called Coercion is proposed in this paper. In order to present detailed complexity results for Coercion, we also conduct an experimental study with standard as well as synthetic data sets to demonstrate the effectiveness of the new algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信