高级文本分析的代数方法

Xiuwen Zheng, Amarnath Gupta
{"title":"高级文本分析的代数方法","authors":"Xiuwen Zheng, Amarnath Gupta","doi":"10.1145/3400903.3400926","DOIUrl":null,"url":null,"abstract":"Text analytical tasks like word embedding, phrase mining and topic modeling, are placing increasing demands as well as challenges to existing database management systems. In this paper, we provide a novel algebraic approach based on associative arrays. Our data model and algebra can bring together relational operators and text operators, which enables interesting optimization opportunities for hybrid data sources that have both relational and textual data. We demonstrate its expressive power in text analytics using several real-world tasks.","PeriodicalId":334018,"journal":{"name":"32nd International Conference on Scientific and Statistical Database Management","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Algebraic Approach for High-level Text Analytics\",\"authors\":\"Xiuwen Zheng, Amarnath Gupta\",\"doi\":\"10.1145/3400903.3400926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text analytical tasks like word embedding, phrase mining and topic modeling, are placing increasing demands as well as challenges to existing database management systems. In this paper, we provide a novel algebraic approach based on associative arrays. Our data model and algebra can bring together relational operators and text operators, which enables interesting optimization opportunities for hybrid data sources that have both relational and textual data. We demonstrate its expressive power in text analytics using several real-world tasks.\",\"PeriodicalId\":334018,\"journal\":{\"name\":\"32nd International Conference on Scientific and Statistical Database Management\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"32nd International Conference on Scientific and Statistical Database Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3400903.3400926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"32nd International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3400903.3400926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

文本分析任务,如词嵌入、短语挖掘和主题建模,对现有的数据库管理系统提出了越来越多的要求和挑战。在本文中,我们提出了一种新的基于关联数组的代数方法。我们的数据模型和代数可以将关系操作符和文本操作符结合在一起,这为同时具有关系数据和文本数据的混合数据源提供了有趣的优化机会。我们使用几个现实世界的任务来演示它在文本分析中的表达能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Algebraic Approach for High-level Text Analytics
Text analytical tasks like word embedding, phrase mining and topic modeling, are placing increasing demands as well as challenges to existing database management systems. In this paper, we provide a novel algebraic approach based on associative arrays. Our data model and algebra can bring together relational operators and text operators, which enables interesting optimization opportunities for hybrid data sources that have both relational and textual data. We demonstrate its expressive power in text analytics using several real-world tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信