时间截尾数据和失效截尾数据的扩展杰弗瑞先验信息Bayes估计

Haneen Reed Sahib, Hadeel Salim Al-Kutubi
{"title":"时间截尾数据和失效截尾数据的扩展杰弗瑞先验信息Bayes估计","authors":"Haneen Reed Sahib, Hadeel Salim Al-Kutubi","doi":"10.31642/jokmc/2018/100208","DOIUrl":null,"url":null,"abstract":"In this research, the Bayes estimator was derived based on Time censored data of the first type, and the Failure censored data of the second type. Reliance has been made on extension of Jeffery prior information. Finally, the simulation was used based on the MATLAB program and with different inputs to find the best estimator among Maximum Likelihood estimator and Bayes estimators with extension that has the least mean percentage error","PeriodicalId":115908,"journal":{"name":"Journal of Kufa for Mathematics and Computer","volume":"447 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayes estimators with extension of Jeffery prior information for Time censored data and Failure censored data\",\"authors\":\"Haneen Reed Sahib, Hadeel Salim Al-Kutubi\",\"doi\":\"10.31642/jokmc/2018/100208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, the Bayes estimator was derived based on Time censored data of the first type, and the Failure censored data of the second type. Reliance has been made on extension of Jeffery prior information. Finally, the simulation was used based on the MATLAB program and with different inputs to find the best estimator among Maximum Likelihood estimator and Bayes estimators with extension that has the least mean percentage error\",\"PeriodicalId\":115908,\"journal\":{\"name\":\"Journal of Kufa for Mathematics and Computer\",\"volume\":\"447 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Kufa for Mathematics and Computer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31642/jokmc/2018/100208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Kufa for Mathematics and Computer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31642/jokmc/2018/100208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,基于第一种类型的时间截尾数据和第二种类型的失效截尾数据分别导出了贝叶斯估计量。对Jeffery先验信息的扩展进行了信赖。最后,利用MATLAB程序在不同输入条件下进行仿真,在极大似然估计量和带扩展的贝叶斯估计量中寻找平均百分比误差最小的最佳估计量
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayes estimators with extension of Jeffery prior information for Time censored data and Failure censored data
In this research, the Bayes estimator was derived based on Time censored data of the first type, and the Failure censored data of the second type. Reliance has been made on extension of Jeffery prior information. Finally, the simulation was used based on the MATLAB program and with different inputs to find the best estimator among Maximum Likelihood estimator and Bayes estimators with extension that has the least mean percentage error
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信