在下行时钟拍卖中优化价格

Tri-Dung Nguyen, T. Sandholm
{"title":"在下行时钟拍卖中优化价格","authors":"Tri-Dung Nguyen, T. Sandholm","doi":"10.1145/2600057.2602869","DOIUrl":null,"url":null,"abstract":"A descending (multi-item) clock auction (DCA) is a mechanism for buying items from multiple potential sellers. In the DCA, bidder-specific prices are decremented over the course of the auction. In each round, each bidder might accept or decline his offer price. Accepting means the bidder is willing to sell at that price. Rejecting means the bidder will not sell at that price or a lower price. DCAs have been proposed as the method for procuring spectrum from existing holders in the FCC's imminent incentive auctions so spectrum can be repurposed to higher-value uses. However, the DCA design has lacked a way to determine the prices to offer the bidders in each round. This is a recognized, important, and timely problem. We present, to our knowledge, the first techniques for this. We develop a percentile-based approach which provides a means to naturally reduce the offer prices to the bidders through the bidding rounds. We also develop an optimization model for setting prices so as to minimize expected payment while stochastically satisfying the feasibility constraint. (The DCA has a final adjustment round that obtains feasibility after feasibility has been lost in the final round of the main DCA.) We prove attractive properties of this, such as symmetry and monotonicity. We develop computational methods for solving the model. (We also develop optimization models with recourse, but they are not computationally practical.) We present experiments both on the homogeneous items case and the case of FCC incentive auctions, where we use real interference constraint data to get a fully faithful model of feasibility. An unexpected paradox about DCAs is that sometimes when the number of rounds allowed increases, the final payment increases. We provide an explanation for this.","PeriodicalId":203155,"journal":{"name":"Proceedings of the fifteenth ACM conference on Economics and computation","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Optimizing prices in descending clock auctions\",\"authors\":\"Tri-Dung Nguyen, T. Sandholm\",\"doi\":\"10.1145/2600057.2602869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A descending (multi-item) clock auction (DCA) is a mechanism for buying items from multiple potential sellers. In the DCA, bidder-specific prices are decremented over the course of the auction. In each round, each bidder might accept or decline his offer price. Accepting means the bidder is willing to sell at that price. Rejecting means the bidder will not sell at that price or a lower price. DCAs have been proposed as the method for procuring spectrum from existing holders in the FCC's imminent incentive auctions so spectrum can be repurposed to higher-value uses. However, the DCA design has lacked a way to determine the prices to offer the bidders in each round. This is a recognized, important, and timely problem. We present, to our knowledge, the first techniques for this. We develop a percentile-based approach which provides a means to naturally reduce the offer prices to the bidders through the bidding rounds. We also develop an optimization model for setting prices so as to minimize expected payment while stochastically satisfying the feasibility constraint. (The DCA has a final adjustment round that obtains feasibility after feasibility has been lost in the final round of the main DCA.) We prove attractive properties of this, such as symmetry and monotonicity. We develop computational methods for solving the model. (We also develop optimization models with recourse, but they are not computationally practical.) We present experiments both on the homogeneous items case and the case of FCC incentive auctions, where we use real interference constraint data to get a fully faithful model of feasibility. An unexpected paradox about DCAs is that sometimes when the number of rounds allowed increases, the final payment increases. We provide an explanation for this.\",\"PeriodicalId\":203155,\"journal\":{\"name\":\"Proceedings of the fifteenth ACM conference on Economics and computation\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the fifteenth ACM conference on Economics and computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2600057.2602869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the fifteenth ACM conference on Economics and computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2600057.2602869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

递减(多物品)时钟拍卖(DCA)是一种从多个潜在卖家那里购买物品的机制。在DCA中,特定投标人的价格在拍卖过程中递减。在每一轮中,每个投标人可以接受或拒绝他的出价。接受意味着出价人愿意以这个价格出售。拒绝意味着投标人不会以该价格或更低的价格出售。在FCC即将进行的激励拍卖中,dca已被提议作为从现有持有者那里获得频谱的方法,以便频谱可以重新用于更高价值的用途。然而,DCA设计缺乏一种确定每轮投标方报价的方法。这是一个公认的、重要的、及时的问题。据我们所知,我们提出了这方面的第一个技术。我们开发了一种基于百分位数的方法,该方法提供了一种通过招标轮次自然降低投标人报价的方法。在随机满足可行性约束的情况下,建立了价格设定的优化模型,使期望支付最小化。(DCA有最后一轮调整,在主DCA最后一轮失去可行性后获得可行性。)我们证明了它的一些吸引人的性质,如对称性和单调性。我们开发了求解模型的计算方法。(我们也开发了有追索权的优化模型,但它们在计算上并不实用。)我们提出了同质物品情况和FCC激励拍卖情况的实验,其中我们使用真实的干扰约束数据来获得完全忠实的可行性模型。关于dca的一个意想不到的悖论是,有时当允许的回合数增加时,最终支付也会增加。我们对此提供一个解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing prices in descending clock auctions
A descending (multi-item) clock auction (DCA) is a mechanism for buying items from multiple potential sellers. In the DCA, bidder-specific prices are decremented over the course of the auction. In each round, each bidder might accept or decline his offer price. Accepting means the bidder is willing to sell at that price. Rejecting means the bidder will not sell at that price or a lower price. DCAs have been proposed as the method for procuring spectrum from existing holders in the FCC's imminent incentive auctions so spectrum can be repurposed to higher-value uses. However, the DCA design has lacked a way to determine the prices to offer the bidders in each round. This is a recognized, important, and timely problem. We present, to our knowledge, the first techniques for this. We develop a percentile-based approach which provides a means to naturally reduce the offer prices to the bidders through the bidding rounds. We also develop an optimization model for setting prices so as to minimize expected payment while stochastically satisfying the feasibility constraint. (The DCA has a final adjustment round that obtains feasibility after feasibility has been lost in the final round of the main DCA.) We prove attractive properties of this, such as symmetry and monotonicity. We develop computational methods for solving the model. (We also develop optimization models with recourse, but they are not computationally practical.) We present experiments both on the homogeneous items case and the case of FCC incentive auctions, where we use real interference constraint data to get a fully faithful model of feasibility. An unexpected paradox about DCAs is that sometimes when the number of rounds allowed increases, the final payment increases. We provide an explanation for this.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信