{"title":"战术自组网中基于深度强化学习的延迟感知TDMA调度","authors":"Gwan-sik Wi, Sunghwa Son, Kyung-Joon Park","doi":"10.1109/ICTC49870.2020.9289080","DOIUrl":null,"url":null,"abstract":"In tactical networks, traffic should be delivered in a timely manner satisfying the quality of service (QoS) requirements for survivability and mission success. In this paper, we propose a centralized TDMA slot scheduling based on deep reinforcement learning (DRL) to guarantee the QoS requirements by minimizing end-to-end delay. We consider situations in which mission criticality of tactical traffic is dynamically changing. We introduce a DRL actor-critic algorithm to find a TDMA scheduling policy to minimize the weighted end-to-end delay which is a new metric reflecting the mission criticality of tactical traffic. The simulation results verify that the proposed scheduling policy can guarantee QoS requirements in tactical networks.","PeriodicalId":282243,"journal":{"name":"2020 International Conference on Information and Communication Technology Convergence (ICTC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Delay-aware TDMA Scheduling with Deep Reinforcement Learning in Tactical MANET\",\"authors\":\"Gwan-sik Wi, Sunghwa Son, Kyung-Joon Park\",\"doi\":\"10.1109/ICTC49870.2020.9289080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In tactical networks, traffic should be delivered in a timely manner satisfying the quality of service (QoS) requirements for survivability and mission success. In this paper, we propose a centralized TDMA slot scheduling based on deep reinforcement learning (DRL) to guarantee the QoS requirements by minimizing end-to-end delay. We consider situations in which mission criticality of tactical traffic is dynamically changing. We introduce a DRL actor-critic algorithm to find a TDMA scheduling policy to minimize the weighted end-to-end delay which is a new metric reflecting the mission criticality of tactical traffic. The simulation results verify that the proposed scheduling policy can guarantee QoS requirements in tactical networks.\",\"PeriodicalId\":282243,\"journal\":{\"name\":\"2020 International Conference on Information and Communication Technology Convergence (ICTC)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Information and Communication Technology Convergence (ICTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTC49870.2020.9289080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Information and Communication Technology Convergence (ICTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTC49870.2020.9289080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Delay-aware TDMA Scheduling with Deep Reinforcement Learning in Tactical MANET
In tactical networks, traffic should be delivered in a timely manner satisfying the quality of service (QoS) requirements for survivability and mission success. In this paper, we propose a centralized TDMA slot scheduling based on deep reinforcement learning (DRL) to guarantee the QoS requirements by minimizing end-to-end delay. We consider situations in which mission criticality of tactical traffic is dynamically changing. We introduce a DRL actor-critic algorithm to find a TDMA scheduling policy to minimize the weighted end-to-end delay which is a new metric reflecting the mission criticality of tactical traffic. The simulation results verify that the proposed scheduling policy can guarantee QoS requirements in tactical networks.