基于原理图环境图的四旋翼无人机室内导航

Tomasz Krokowicz, Miguel Gasca, H. Voos, D. Ucinski
{"title":"基于原理图环境图的四旋翼无人机室内导航","authors":"Tomasz Krokowicz, Miguel Gasca, H. Voos, D. Ucinski","doi":"10.1109/RAAD.2010.5524541","DOIUrl":null,"url":null,"abstract":"Quadrotor UAVs are a very promising type of small unmanned aerial vehicles for indoor applications because of the easy construction and propulsion principle that also allows very slow and hovering flight. However, the payload of the vehicle is very limited and the nonlinear dynamics requires advanced stabilizing control. In this paper, a flight control and navigation system for an autonomous quadrotor UAV is proposed which is especially suitable for indoor applications. The basic flight controller comprises a cascaded nonlinear control structure which finally stabilizes a commanded velocity vector. The navigation system is based on schematic maps of the environment and sensor information which is delivered by simple and small ultrasonic sensors. First simulation and experimental results underline the performance of the obtained solution.","PeriodicalId":104308,"journal":{"name":"19th International Workshop on Robotics in Alpe-Adria-Danube Region (RAAD 2010)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Indoor navigation for quadrotor UAVS using schematic environment maps\",\"authors\":\"Tomasz Krokowicz, Miguel Gasca, H. Voos, D. Ucinski\",\"doi\":\"10.1109/RAAD.2010.5524541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quadrotor UAVs are a very promising type of small unmanned aerial vehicles for indoor applications because of the easy construction and propulsion principle that also allows very slow and hovering flight. However, the payload of the vehicle is very limited and the nonlinear dynamics requires advanced stabilizing control. In this paper, a flight control and navigation system for an autonomous quadrotor UAV is proposed which is especially suitable for indoor applications. The basic flight controller comprises a cascaded nonlinear control structure which finally stabilizes a commanded velocity vector. The navigation system is based on schematic maps of the environment and sensor information which is delivered by simple and small ultrasonic sensors. First simulation and experimental results underline the performance of the obtained solution.\",\"PeriodicalId\":104308,\"journal\":{\"name\":\"19th International Workshop on Robotics in Alpe-Adria-Danube Region (RAAD 2010)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"19th International Workshop on Robotics in Alpe-Adria-Danube Region (RAAD 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAAD.2010.5524541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"19th International Workshop on Robotics in Alpe-Adria-Danube Region (RAAD 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAAD.2010.5524541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

四旋翼无人机是一种非常有前途的小型无人驾驶飞行器,用于室内应用,因为它易于建造和推进原理,也允许非常缓慢和悬停飞行。然而,车辆的有效载荷是非常有限的,非线性动力学需要先进的稳定控制。本文提出了一种特别适合于室内应用的自主四旋翼无人机飞行控制与导航系统。基本的飞行控制器包括一个级联非线性控制结构,最终稳定指定的速度矢量。该导航系统基于环境示意图和传感器信息,这些信息由简单而小型的超声波传感器传递。首先,仿真和实验结果强调了所得到的解的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Indoor navigation for quadrotor UAVS using schematic environment maps
Quadrotor UAVs are a very promising type of small unmanned aerial vehicles for indoor applications because of the easy construction and propulsion principle that also allows very slow and hovering flight. However, the payload of the vehicle is very limited and the nonlinear dynamics requires advanced stabilizing control. In this paper, a flight control and navigation system for an autonomous quadrotor UAV is proposed which is especially suitable for indoor applications. The basic flight controller comprises a cascaded nonlinear control structure which finally stabilizes a commanded velocity vector. The navigation system is based on schematic maps of the environment and sensor information which is delivered by simple and small ultrasonic sensors. First simulation and experimental results underline the performance of the obtained solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信