一些使用cnn的可分离线性滤波任务

R. Matei
{"title":"一些使用cnn的可分离线性滤波任务","authors":"R. Matei","doi":"10.1109/SCS.2003.1226981","DOIUrl":null,"url":null,"abstract":"In this paper, we propose some efficient realizations of separable 2-D spatial filters implemented on Cellular Neural Networks (CNNs), based on the Gaussian distribution function, which is approximated by both FIR and IIR filters. We also present a method of iterative filtering, which allows a selective Gaussian function to be implemented by repeating a simple filtering task several times. Some examples of selective low-pass and band-pass separable filters are given to illustrate the design methods.","PeriodicalId":375963,"journal":{"name":"Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Some separable linear filtering tasks using CNNs\",\"authors\":\"R. Matei\",\"doi\":\"10.1109/SCS.2003.1226981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose some efficient realizations of separable 2-D spatial filters implemented on Cellular Neural Networks (CNNs), based on the Gaussian distribution function, which is approximated by both FIR and IIR filters. We also present a method of iterative filtering, which allows a selective Gaussian function to be implemented by repeating a simple filtering task several times. Some examples of selective low-pass and band-pass separable filters are given to illustrate the design methods.\",\"PeriodicalId\":375963,\"journal\":{\"name\":\"Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCS.2003.1226981\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCS.2003.1226981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一些基于高斯分布函数的细胞神经网络(cnn)可分离二维空间滤波器的有效实现,该函数由FIR和IIR滤波器近似。我们还提出了一种迭代滤波方法,该方法允许通过多次重复简单的滤波任务来实现选择性高斯函数。并举例说明了选择性低通和带通可分离滤波器的设计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some separable linear filtering tasks using CNNs
In this paper, we propose some efficient realizations of separable 2-D spatial filters implemented on Cellular Neural Networks (CNNs), based on the Gaussian distribution function, which is approximated by both FIR and IIR filters. We also present a method of iterative filtering, which allows a selective Gaussian function to be implemented by repeating a simple filtering task several times. Some examples of selective low-pass and band-pass separable filters are given to illustrate the design methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信