基于置信度的第一次局部最大化最小化事件规则挖掘

H. K. Dai
{"title":"基于置信度的第一次局部最大化最小化事件规则挖掘","authors":"H. K. Dai","doi":"10.1145/3287921.3287982","DOIUrl":null,"url":null,"abstract":"An episode rule of associating two episodes represents a temporal implication of the antecedent episode to the consequent episode. Episode-rule mining is a task of extracting useful patterns/episodes from large event databases. We present an episode-rule mining algorithm for finding frequent and confident serial-episode rules via first local-maximum confidence in yielding ideal window widths, if exist, in event sequences based on minimal occurrences constrained by a constant maximum gap. Results from our preliminary empirical study confirm the applicability of the episode-rule mining algorithm for Web-site traversal-pattern discovery, and show that the first local maximization yielding ideal window widths exists in real data but rarely in synthetic random data sets.","PeriodicalId":448008,"journal":{"name":"Proceedings of the 9th International Symposium on Information and Communication Technology","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Episode-Rule Mining with Minimal Occurrences via First Local Maximization in Confidence\",\"authors\":\"H. K. Dai\",\"doi\":\"10.1145/3287921.3287982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An episode rule of associating two episodes represents a temporal implication of the antecedent episode to the consequent episode. Episode-rule mining is a task of extracting useful patterns/episodes from large event databases. We present an episode-rule mining algorithm for finding frequent and confident serial-episode rules via first local-maximum confidence in yielding ideal window widths, if exist, in event sequences based on minimal occurrences constrained by a constant maximum gap. Results from our preliminary empirical study confirm the applicability of the episode-rule mining algorithm for Web-site traversal-pattern discovery, and show that the first local maximization yielding ideal window widths exists in real data but rarely in synthetic random data sets.\",\"PeriodicalId\":448008,\"journal\":{\"name\":\"Proceedings of the 9th International Symposium on Information and Communication Technology\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th International Symposium on Information and Communication Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3287921.3287982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Symposium on Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3287921.3287982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

将两个情节联系起来的情节规则代表了前一个情节对后一个情节的时间含义。事件规则挖掘是一项从大型事件数据库中提取有用模式/事件的任务。我们提出了一种情景规则挖掘算法,该算法通过第一个局部最大置信度来发现频繁和可靠的串行情景规则,如果存在,则在基于最小事件的事件序列中,由恒定最大间隙约束的理想窗宽。我们的初步实证研究结果证实了情节规则挖掘算法在网站遍历模式发现中的适用性,并表明产生理想窗口宽度的第一个局部最大化存在于真实数据中,而很少存在于合成随机数据集中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Episode-Rule Mining with Minimal Occurrences via First Local Maximization in Confidence
An episode rule of associating two episodes represents a temporal implication of the antecedent episode to the consequent episode. Episode-rule mining is a task of extracting useful patterns/episodes from large event databases. We present an episode-rule mining algorithm for finding frequent and confident serial-episode rules via first local-maximum confidence in yielding ideal window widths, if exist, in event sequences based on minimal occurrences constrained by a constant maximum gap. Results from our preliminary empirical study confirm the applicability of the episode-rule mining algorithm for Web-site traversal-pattern discovery, and show that the first local maximization yielding ideal window widths exists in real data but rarely in synthetic random data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信