周期精确的宏观模型,用于rt级功率分析

Qinru Qiu, Qing Wu, Massoud Pedram, Chih-Shun Ding
{"title":"周期精确的宏观模型,用于rt级功率分析","authors":"Qinru Qiu, Qing Wu, Massoud Pedram, Chih-Shun Ding","doi":"10.1145/263272.263305","DOIUrl":null,"url":null,"abstract":"In this paper we present a methodology and techniques for generating cycle-accurate macro-models for RT-level power analysis. The proposed macro-model predicts nor only the cycle-by-cycle power consumption of a module, but the power profile of the module over time. The proposed methodology consists of three steps: module equation form generation and variable selection, variable reduction and population stratification. First order temporal correlations and spatial correlations of up to order 3 are considered to improve the estimation accuracy. Experimental results show that, the macro-models have 15 or less variables and exhibit <5% error in average power and <15% errors in cycle-by-cycle power compared to circuit simulation results using Powermill.","PeriodicalId":334688,"journal":{"name":"Proceedings of 1997 International Symposium on Low Power Electronics and Design","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"99","resultStr":"{\"title\":\"Cycle-accurate macro-models for RT-level power analysis\",\"authors\":\"Qinru Qiu, Qing Wu, Massoud Pedram, Chih-Shun Ding\",\"doi\":\"10.1145/263272.263305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a methodology and techniques for generating cycle-accurate macro-models for RT-level power analysis. The proposed macro-model predicts nor only the cycle-by-cycle power consumption of a module, but the power profile of the module over time. The proposed methodology consists of three steps: module equation form generation and variable selection, variable reduction and population stratification. First order temporal correlations and spatial correlations of up to order 3 are considered to improve the estimation accuracy. Experimental results show that, the macro-models have 15 or less variables and exhibit <5% error in average power and <15% errors in cycle-by-cycle power compared to circuit simulation results using Powermill.\",\"PeriodicalId\":334688,\"journal\":{\"name\":\"Proceedings of 1997 International Symposium on Low Power Electronics and Design\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"99\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1997 International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/263272.263305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1997 International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/263272.263305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 99

摘要

在本文中,我们提出了一种生成周期精确的宏观模型的方法和技术,用于rt级功率分析。所提出的宏观模型不仅预测模块每个周期的功耗,还预测模块随时间的功耗分布。该方法包括三个步骤:模块方程生成和变量选择、变量缩减和群体分层。为了提高估计精度,考虑了一阶时间相关和高达3阶的空间相关。实验结果表明,与使用Powermill的电路仿真结果相比,宏模型的变量小于等于15个,平均功率误差小于5%,逐周功率误差小于15%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cycle-accurate macro-models for RT-level power analysis
In this paper we present a methodology and techniques for generating cycle-accurate macro-models for RT-level power analysis. The proposed macro-model predicts nor only the cycle-by-cycle power consumption of a module, but the power profile of the module over time. The proposed methodology consists of three steps: module equation form generation and variable selection, variable reduction and population stratification. First order temporal correlations and spatial correlations of up to order 3 are considered to improve the estimation accuracy. Experimental results show that, the macro-models have 15 or less variables and exhibit <5% error in average power and <15% errors in cycle-by-cycle power compared to circuit simulation results using Powermill.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信