{"title":"多图嵌入的流形对齐","authors":"Chang-Bin Huang, Timothy Apasiba Abeo, Xiang-jun Shen","doi":"10.1145/3338533.3366588","DOIUrl":null,"url":null,"abstract":"In this paper, a novel manifold alignment approach via multi-graph embedding (MA-MGE) is proposed. Different from the traditional manifold alignment algorithms that use a single graph to describe the latent manifold structure of each dataset, our approach utilizes multiple graphs for modeling multiple local manifolds in multi-view data alignment. Therefore a composite manifold representation with complete and more useful information is obtained from each dataset through a dynamic reconstruction of multiple graphs. Experimental results on Protein and Face-10 datasets demonstrate that the mapping coordinates of the proposed method provide better alignment performance compared to the state-of-the-art methods, such as semi-supervised manifold alignment (SS-MA), manifold alignment using Procrustes analysis (PAMA) and manifold alignment without correspondence (UNMA).","PeriodicalId":273086,"journal":{"name":"Proceedings of the ACM Multimedia Asia","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manifold Alignment with Multi-graph Embedding\",\"authors\":\"Chang-Bin Huang, Timothy Apasiba Abeo, Xiang-jun Shen\",\"doi\":\"10.1145/3338533.3366588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel manifold alignment approach via multi-graph embedding (MA-MGE) is proposed. Different from the traditional manifold alignment algorithms that use a single graph to describe the latent manifold structure of each dataset, our approach utilizes multiple graphs for modeling multiple local manifolds in multi-view data alignment. Therefore a composite manifold representation with complete and more useful information is obtained from each dataset through a dynamic reconstruction of multiple graphs. Experimental results on Protein and Face-10 datasets demonstrate that the mapping coordinates of the proposed method provide better alignment performance compared to the state-of-the-art methods, such as semi-supervised manifold alignment (SS-MA), manifold alignment using Procrustes analysis (PAMA) and manifold alignment without correspondence (UNMA).\",\"PeriodicalId\":273086,\"journal\":{\"name\":\"Proceedings of the ACM Multimedia Asia\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Multimedia Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3338533.3366588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3338533.3366588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, a novel manifold alignment approach via multi-graph embedding (MA-MGE) is proposed. Different from the traditional manifold alignment algorithms that use a single graph to describe the latent manifold structure of each dataset, our approach utilizes multiple graphs for modeling multiple local manifolds in multi-view data alignment. Therefore a composite manifold representation with complete and more useful information is obtained from each dataset through a dynamic reconstruction of multiple graphs. Experimental results on Protein and Face-10 datasets demonstrate that the mapping coordinates of the proposed method provide better alignment performance compared to the state-of-the-art methods, such as semi-supervised manifold alignment (SS-MA), manifold alignment using Procrustes analysis (PAMA) and manifold alignment without correspondence (UNMA).