K. Q. da Costa, J. Costa, V. Dmitriev, T. Del Rosso, O. Pandoli, R. Aucélio
{"title":"表面等离子体共振传感器与金纳米粒子周期阵列耦合的分析","authors":"K. Q. da Costa, J. Costa, V. Dmitriev, T. Del Rosso, O. Pandoli, R. Aucélio","doi":"10.1109/IMOC.2015.7369093","DOIUrl":null,"url":null,"abstract":"This paper presents a theoretical analysis of a surface plasmon resonance sensor coupled to a periodic array of spherical gold nanoparticles (AuNps). The sensor is in the Kretschmann configuration and composed by five layers: prism, thin gold film, dielectric insulator, array of AuNps and air. The AuNps layer is modeled with an effective permittivity by the Maxwell-Garnett mixing formula, and the wave propagation is analyzed using a generalized reflection coefficient. The results are presented in terms of reflectivity and modal field distributions for different thickness of the layers and geometry of the AuNps array.","PeriodicalId":431462,"journal":{"name":"2015 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Analysis of surface plasmon resonance sensor coupled to periodic array of gold nanoparticles\",\"authors\":\"K. Q. da Costa, J. Costa, V. Dmitriev, T. Del Rosso, O. Pandoli, R. Aucélio\",\"doi\":\"10.1109/IMOC.2015.7369093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a theoretical analysis of a surface plasmon resonance sensor coupled to a periodic array of spherical gold nanoparticles (AuNps). The sensor is in the Kretschmann configuration and composed by five layers: prism, thin gold film, dielectric insulator, array of AuNps and air. The AuNps layer is modeled with an effective permittivity by the Maxwell-Garnett mixing formula, and the wave propagation is analyzed using a generalized reflection coefficient. The results are presented in terms of reflectivity and modal field distributions for different thickness of the layers and geometry of the AuNps array.\",\"PeriodicalId\":431462,\"journal\":{\"name\":\"2015 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMOC.2015.7369093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMOC.2015.7369093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of surface plasmon resonance sensor coupled to periodic array of gold nanoparticles
This paper presents a theoretical analysis of a surface plasmon resonance sensor coupled to a periodic array of spherical gold nanoparticles (AuNps). The sensor is in the Kretschmann configuration and composed by five layers: prism, thin gold film, dielectric insulator, array of AuNps and air. The AuNps layer is modeled with an effective permittivity by the Maxwell-Garnett mixing formula, and the wave propagation is analyzed using a generalized reflection coefficient. The results are presented in terms of reflectivity and modal field distributions for different thickness of the layers and geometry of the AuNps array.