第13章。使用Galaxy进行蛋白质组学研究

Candace R. Guerrero, P. Jagtap, James E. Johnson, T. Griffin
{"title":"第13章。使用Galaxy进行蛋白质组学研究","authors":"Candace R. Guerrero, P. Jagtap, James E. Johnson, T. Griffin","doi":"10.1039/9781782626732-00289","DOIUrl":null,"url":null,"abstract":"The area of informatics for mass spectrometry (MS)-based proteomics data has steadily grown over the last two decades. Numerous, effective software programs now exist for various aspects of proteomic informatics. However, many researchers still have difficulties in using these software. These difficulties arise from problems with running and integrating disparate software programs, scalability issues when dealing with large data volumes, and lack of ability to share and reproduce workflows comprised of different software. The Galaxy framework for bioinformatics provides an attractive option for solving many of these current issues in proteomic informatics. Originally developed as a workbench to enable genomic data analysis, numerous researchers are now turning to Galaxy to implement software for MS-based proteomics applications. Here, we provide an introduction to Galaxy and its features, and describe how software tools are deployed, published and shared via the scalable framework. We also describe some of the existing tools in Galaxy for basic MS-based proteomics data analysis and informatics. Finally, we describe how proteomics tools in Galaxy can be combined with other existing tools for genomic and transcriptomic data analysis to enable powerful multi-omic data analysis applications.","PeriodicalId":192946,"journal":{"name":"Proteome Informatics","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Chapter 13. Using Galaxy for Proteomics\",\"authors\":\"Candace R. Guerrero, P. Jagtap, James E. Johnson, T. Griffin\",\"doi\":\"10.1039/9781782626732-00289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The area of informatics for mass spectrometry (MS)-based proteomics data has steadily grown over the last two decades. Numerous, effective software programs now exist for various aspects of proteomic informatics. However, many researchers still have difficulties in using these software. These difficulties arise from problems with running and integrating disparate software programs, scalability issues when dealing with large data volumes, and lack of ability to share and reproduce workflows comprised of different software. The Galaxy framework for bioinformatics provides an attractive option for solving many of these current issues in proteomic informatics. Originally developed as a workbench to enable genomic data analysis, numerous researchers are now turning to Galaxy to implement software for MS-based proteomics applications. Here, we provide an introduction to Galaxy and its features, and describe how software tools are deployed, published and shared via the scalable framework. We also describe some of the existing tools in Galaxy for basic MS-based proteomics data analysis and informatics. Finally, we describe how proteomics tools in Galaxy can be combined with other existing tools for genomic and transcriptomic data analysis to enable powerful multi-omic data analysis applications.\",\"PeriodicalId\":192946,\"journal\":{\"name\":\"Proteome Informatics\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteome Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/9781782626732-00289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteome Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/9781782626732-00289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在过去的二十年中,基于质谱(MS)的蛋白质组学数据信息学领域稳步增长。现在存在许多有效的软件程序,用于蛋白质组学的各个方面。然而,许多研究人员在使用这些软件时仍然有困难。这些困难来自于运行和集成不同软件程序的问题、处理大数据量时的可伸缩性问题,以及缺乏共享和重现由不同软件组成的工作流的能力。生物信息学的银河框架为解决蛋白质组学中的许多当前问题提供了一个有吸引力的选择。最初开发作为一个工作台,使基因组数据分析,许多研究人员现在转向银河实现软件的MS-based蛋白质组学应用。在这里,我们介绍了Galaxy及其功能,并描述了如何通过可扩展框架部署、发布和共享软件工具。我们还描述了一些现有的工具在银河基本的基于ms的蛋白质组学数据分析和信息学。最后,我们描述了如何将Galaxy中的蛋白质组学工具与其他现有的基因组和转录组学数据分析工具相结合,以实现强大的多组学数据分析应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chapter 13. Using Galaxy for Proteomics
The area of informatics for mass spectrometry (MS)-based proteomics data has steadily grown over the last two decades. Numerous, effective software programs now exist for various aspects of proteomic informatics. However, many researchers still have difficulties in using these software. These difficulties arise from problems with running and integrating disparate software programs, scalability issues when dealing with large data volumes, and lack of ability to share and reproduce workflows comprised of different software. The Galaxy framework for bioinformatics provides an attractive option for solving many of these current issues in proteomic informatics. Originally developed as a workbench to enable genomic data analysis, numerous researchers are now turning to Galaxy to implement software for MS-based proteomics applications. Here, we provide an introduction to Galaxy and its features, and describe how software tools are deployed, published and shared via the scalable framework. We also describe some of the existing tools in Galaxy for basic MS-based proteomics data analysis and informatics. Finally, we describe how proteomics tools in Galaxy can be combined with other existing tools for genomic and transcriptomic data analysis to enable powerful multi-omic data analysis applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信