西奥多罗斯变异

Ewan Brinkman, Robert M Corless, Veselin Jungić
{"title":"西奥多罗斯变异","authors":"Ewan Brinkman, Robert M Corless, Veselin Jungić","doi":"10.5206/mt.v1i2.14500","DOIUrl":null,"url":null,"abstract":"The Spiral of Theodorus, also known as the \"root snail\" from its connection with square roots, can be constructed by hand from triangles made with from paper with scissors, ruler, and protractor.  See the Video Abstract.  Once the triangles are made, two different but similar spirals can be made.  This paper proves some things about the second spiral; in particular that the open curve generated by the inner vertices monotonically approaches a circle, and that the vertices are ultimately equidistributed around that inner circle. \n  ","PeriodicalId":355724,"journal":{"name":"Maple Transactions","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Theodorus Variation\",\"authors\":\"Ewan Brinkman, Robert M Corless, Veselin Jungić\",\"doi\":\"10.5206/mt.v1i2.14500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Spiral of Theodorus, also known as the \\\"root snail\\\" from its connection with square roots, can be constructed by hand from triangles made with from paper with scissors, ruler, and protractor.  See the Video Abstract.  Once the triangles are made, two different but similar spirals can be made.  This paper proves some things about the second spiral; in particular that the open curve generated by the inner vertices monotonically approaches a circle, and that the vertices are ultimately equidistributed around that inner circle. \\n  \",\"PeriodicalId\":355724,\"journal\":{\"name\":\"Maple Transactions\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Maple Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5206/mt.v1i2.14500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maple Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5206/mt.v1i2.14500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

西奥多罗斯的螺旋,也被称为“根蜗牛”,因为它与平方根有关,可以用剪刀、尺子和量角器用纸做成三角形,用手构造出来。参见视频摘要。一旦三角形完成,两个不同但相似的螺旋就可以完成了。本文证明了关于第二螺旋的一些问题;特别是,由内部顶点生成的开放曲线单调地接近于一个圆,并且顶点最终在该内部圆周围均匀分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Theodorus Variation
The Spiral of Theodorus, also known as the "root snail" from its connection with square roots, can be constructed by hand from triangles made with from paper with scissors, ruler, and protractor.  See the Video Abstract.  Once the triangles are made, two different but similar spirals can be made.  This paper proves some things about the second spiral; in particular that the open curve generated by the inner vertices monotonically approaches a circle, and that the vertices are ultimately equidistributed around that inner circle.   
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信