R. Mishra, Puran Gour, Sandeep Dhariwal, Manish Kumar, Anubhav Anand
{"title":"DSP处理器低功耗MAC的设计与分析","authors":"R. Mishra, Puran Gour, Sandeep Dhariwal, Manish Kumar, Anubhav Anand","doi":"10.1109/ICAIA57370.2023.10169461","DOIUrl":null,"url":null,"abstract":"This research article represents low-power MAC architecture, which is one of the main building blocks of DSP processors. The MAC unit consists of three important blocks: a multiplier for multiplication, an adder for addition, and an accumulator for storing the results. So, by reducing the power dissipation of multiplier and adder units, we can propose a low-power MAC architecture. In this paper, first a low-power Baugh-Wooley multiplier (with a proposed 2S-T full adder design) and a conventional Baugh-Wooley multiplier (with an existing 2S-T full adder design) are analyzed using Cadence Virtuoso. The proposed full-adder-based Baugh-Wooley multiplier exhibits 32.41 microwatts of power dissipation, which is much less than the conventional Baugh-Wooley multiplier’s power consumption of 2.743 milliwatts. After multipliers, a MAC unit with a conventional multiplier is also simulated with 2.743 milliwatts and using the proposed multiplier with a significant power reduction of 0.5504 milliwatts.","PeriodicalId":196526,"journal":{"name":"2023 International Conference on Artificial Intelligence and Applications (ICAIA) Alliance Technology Conference (ATCON-1)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Analysis of Low Power MAC for DSP Processor\",\"authors\":\"R. Mishra, Puran Gour, Sandeep Dhariwal, Manish Kumar, Anubhav Anand\",\"doi\":\"10.1109/ICAIA57370.2023.10169461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research article represents low-power MAC architecture, which is one of the main building blocks of DSP processors. The MAC unit consists of three important blocks: a multiplier for multiplication, an adder for addition, and an accumulator for storing the results. So, by reducing the power dissipation of multiplier and adder units, we can propose a low-power MAC architecture. In this paper, first a low-power Baugh-Wooley multiplier (with a proposed 2S-T full adder design) and a conventional Baugh-Wooley multiplier (with an existing 2S-T full adder design) are analyzed using Cadence Virtuoso. The proposed full-adder-based Baugh-Wooley multiplier exhibits 32.41 microwatts of power dissipation, which is much less than the conventional Baugh-Wooley multiplier’s power consumption of 2.743 milliwatts. After multipliers, a MAC unit with a conventional multiplier is also simulated with 2.743 milliwatts and using the proposed multiplier with a significant power reduction of 0.5504 milliwatts.\",\"PeriodicalId\":196526,\"journal\":{\"name\":\"2023 International Conference on Artificial Intelligence and Applications (ICAIA) Alliance Technology Conference (ATCON-1)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Artificial Intelligence and Applications (ICAIA) Alliance Technology Conference (ATCON-1)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIA57370.2023.10169461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Artificial Intelligence and Applications (ICAIA) Alliance Technology Conference (ATCON-1)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIA57370.2023.10169461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Analysis of Low Power MAC for DSP Processor
This research article represents low-power MAC architecture, which is one of the main building blocks of DSP processors. The MAC unit consists of three important blocks: a multiplier for multiplication, an adder for addition, and an accumulator for storing the results. So, by reducing the power dissipation of multiplier and adder units, we can propose a low-power MAC architecture. In this paper, first a low-power Baugh-Wooley multiplier (with a proposed 2S-T full adder design) and a conventional Baugh-Wooley multiplier (with an existing 2S-T full adder design) are analyzed using Cadence Virtuoso. The proposed full-adder-based Baugh-Wooley multiplier exhibits 32.41 microwatts of power dissipation, which is much less than the conventional Baugh-Wooley multiplier’s power consumption of 2.743 milliwatts. After multipliers, a MAC unit with a conventional multiplier is also simulated with 2.743 milliwatts and using the proposed multiplier with a significant power reduction of 0.5504 milliwatts.