M. Prist, E. Pallotta, A. Monteriù, S. Longhi, P. Cicconi, A. C. Russo, M. Germani
{"title":"电磁炉灶台能量管理的建模与硬件在环仿真","authors":"M. Prist, E. Pallotta, A. Monteriù, S. Longhi, P. Cicconi, A. C. Russo, M. Germani","doi":"10.1109/ICCE-Berlin.2017.8210641","DOIUrl":null,"url":null,"abstract":"Induction cooktops are very efficient systems, but, their energy consumption should be reduced using a temperature controller for optimizing the electrical power. Such controllers are already widely spread in several applications (air conditioning, ovens, etc.). Induction cooktops work with discrete levels of power, and, therefore, the user can select and modify the requested power level during the cooking. This paper presents the Hardware-In-the-Loop simulation to develop an active temperature controller, which optimizes the energy management of the water boiling using an induction cooktop. A thermal and induction model has been developed in MATLAB/Simulink® framework, while a discrete PID controller has been implemented inside a physical ATMEGA processor and tested within the Hardware-In-the-Loop platform.","PeriodicalId":355536,"journal":{"name":"2017 IEEE 7th International Conference on Consumer Electronics - Berlin (ICCE-Berlin)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Modelling and hardware-in-the-loop simulation for energy management in induction cooktops\",\"authors\":\"M. Prist, E. Pallotta, A. Monteriù, S. Longhi, P. Cicconi, A. C. Russo, M. Germani\",\"doi\":\"10.1109/ICCE-Berlin.2017.8210641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Induction cooktops are very efficient systems, but, their energy consumption should be reduced using a temperature controller for optimizing the electrical power. Such controllers are already widely spread in several applications (air conditioning, ovens, etc.). Induction cooktops work with discrete levels of power, and, therefore, the user can select and modify the requested power level during the cooking. This paper presents the Hardware-In-the-Loop simulation to develop an active temperature controller, which optimizes the energy management of the water boiling using an induction cooktop. A thermal and induction model has been developed in MATLAB/Simulink® framework, while a discrete PID controller has been implemented inside a physical ATMEGA processor and tested within the Hardware-In-the-Loop platform.\",\"PeriodicalId\":355536,\"journal\":{\"name\":\"2017 IEEE 7th International Conference on Consumer Electronics - Berlin (ICCE-Berlin)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Conference on Consumer Electronics - Berlin (ICCE-Berlin)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-Berlin.2017.8210641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Conference on Consumer Electronics - Berlin (ICCE-Berlin)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Berlin.2017.8210641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modelling and hardware-in-the-loop simulation for energy management in induction cooktops
Induction cooktops are very efficient systems, but, their energy consumption should be reduced using a temperature controller for optimizing the electrical power. Such controllers are already widely spread in several applications (air conditioning, ovens, etc.). Induction cooktops work with discrete levels of power, and, therefore, the user can select and modify the requested power level during the cooking. This paper presents the Hardware-In-the-Loop simulation to develop an active temperature controller, which optimizes the energy management of the water boiling using an induction cooktop. A thermal and induction model has been developed in MATLAB/Simulink® framework, while a discrete PID controller has been implemented inside a physical ATMEGA processor and tested within the Hardware-In-the-Loop platform.