真实世界测度下具有驼峰波动率的利率模型

T. Yasuoka
{"title":"真实世界测度下具有驼峰波动率的利率模型","authors":"T. Yasuoka","doi":"10.18282/FF.V7I1.459","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to develop real-world modeling for interest rate volatility with a humped term structure. We consider humped volatility that can be parametrically characterized such that the Hull–White model is a special case. First, we analytically show estimation of the market price of risk with humped volatility. Then, using U.S. treasury yield data, we examine volatility fitting and estimate the market price of risk using the Heath–Jarrow–Morton model, Hull–White model, and humped volatility model. Comparison of the numerical results shows that the real-world humped volatility model is adequately developed.","PeriodicalId":242006,"journal":{"name":"Financial Forum","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interest rate model with humped volatility under the real-world measure\",\"authors\":\"T. Yasuoka\",\"doi\":\"10.18282/FF.V7I1.459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to develop real-world modeling for interest rate volatility with a humped term structure. We consider humped volatility that can be parametrically characterized such that the Hull–White model is a special case. First, we analytically show estimation of the market price of risk with humped volatility. Then, using U.S. treasury yield data, we examine volatility fitting and estimate the market price of risk using the Heath–Jarrow–Morton model, Hull–White model, and humped volatility model. Comparison of the numerical results shows that the real-world humped volatility model is adequately developed.\",\"PeriodicalId\":242006,\"journal\":{\"name\":\"Financial Forum\",\"volume\":\"151 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Financial Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18282/FF.V7I1.459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Financial Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18282/FF.V7I1.459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是开发具有驼峰期限结构的利率波动的真实世界模型。我们考虑可以参数化表征的驼峰波动率,因此Hull-White模型是一个特例。首先,我们解析地给出了具有驼峰波动率的风险的市场价格估计。然后,使用美国国债收益率数据,我们检验了波动性拟合,并使用Heath-Jarrow-Morton模型、Hull-White模型和驼峰波动率模型估计了风险的市场价格。数值计算结果的对比表明,该模型得到了较好的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interest rate model with humped volatility under the real-world measure
The purpose of this paper is to develop real-world modeling for interest rate volatility with a humped term structure. We consider humped volatility that can be parametrically characterized such that the Hull–White model is a special case. First, we analytically show estimation of the market price of risk with humped volatility. Then, using U.S. treasury yield data, we examine volatility fitting and estimate the market price of risk using the Heath–Jarrow–Morton model, Hull–White model, and humped volatility model. Comparison of the numerical results shows that the real-world humped volatility model is adequately developed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信