{"title":"基于稀疏编码和邻居熵的高维空间离群点检测","authors":"Ping Gu, Meng Chow, S. Shao","doi":"10.1145/3387902.3392612","DOIUrl":null,"url":null,"abstract":"Outlier detection is an important branch in data mining and plays a vital role in broad range of applications including network-traffic anomaly detection, credit fraud prevention, etc. Based on the assumption that dataset can be approximately reconstructed by linear combinations of dictionary atoms, some detection algorithms initially project the data to a higher dimensional manifold such that data representation becomes sparse. Unlike previous sparse coding based approaches, our method SNOD (Sparse coding and Neighbor entropy based Outlier Detection) can detect local and global outliers and construct neighborhood in a self-manner. Finally, the outlier score of each sample using local reconstruction coefficients is computed. Experiments on several benchmark datasets and the comparison to the state-of-the-art methods validate the advantages of our algorithm.","PeriodicalId":155089,"journal":{"name":"Proceedings of the 17th ACM International Conference on Computing Frontiers","volume":"40 1-8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Outlier detection based on sparse coding and neighbor entropy in high-dimensional space\",\"authors\":\"Ping Gu, Meng Chow, S. Shao\",\"doi\":\"10.1145/3387902.3392612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Outlier detection is an important branch in data mining and plays a vital role in broad range of applications including network-traffic anomaly detection, credit fraud prevention, etc. Based on the assumption that dataset can be approximately reconstructed by linear combinations of dictionary atoms, some detection algorithms initially project the data to a higher dimensional manifold such that data representation becomes sparse. Unlike previous sparse coding based approaches, our method SNOD (Sparse coding and Neighbor entropy based Outlier Detection) can detect local and global outliers and construct neighborhood in a self-manner. Finally, the outlier score of each sample using local reconstruction coefficients is computed. Experiments on several benchmark datasets and the comparison to the state-of-the-art methods validate the advantages of our algorithm.\",\"PeriodicalId\":155089,\"journal\":{\"name\":\"Proceedings of the 17th ACM International Conference on Computing Frontiers\",\"volume\":\"40 1-8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 17th ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3387902.3392612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3387902.3392612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Outlier detection based on sparse coding and neighbor entropy in high-dimensional space
Outlier detection is an important branch in data mining and plays a vital role in broad range of applications including network-traffic anomaly detection, credit fraud prevention, etc. Based on the assumption that dataset can be approximately reconstructed by linear combinations of dictionary atoms, some detection algorithms initially project the data to a higher dimensional manifold such that data representation becomes sparse. Unlike previous sparse coding based approaches, our method SNOD (Sparse coding and Neighbor entropy based Outlier Detection) can detect local and global outliers and construct neighborhood in a self-manner. Finally, the outlier score of each sample using local reconstruction coefficients is computed. Experiments on several benchmark datasets and the comparison to the state-of-the-art methods validate the advantages of our algorithm.