Z. Marinković, G. Gugliandolo, G. Campobello, G. Crupi, N. Donato
{"title":"人工神经网络在表面声波谐振器频率特性建模中的应用","authors":"Z. Marinković, G. Gugliandolo, G. Campobello, G. Crupi, N. Donato","doi":"10.1109/ICEST52640.2021.9483548","DOIUrl":null,"url":null,"abstract":"This paper deals with the application of the artificial neural networks (ANNs) for modeling the performance of four commercial two-port surface acoustic wave (SAW) resonators. ANNs are used to reproduce the frequency-dependent behaviour of the short-circuit input admittance, thereby enabling a fast and accurate estimation of the resonant parameters.","PeriodicalId":308948,"journal":{"name":"2021 56th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Application of Artificial Neural Networks for Modeling of the Frequency-Dependent Performance of Surface Acoustic Wave Resonators\",\"authors\":\"Z. Marinković, G. Gugliandolo, G. Campobello, G. Crupi, N. Donato\",\"doi\":\"10.1109/ICEST52640.2021.9483548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the application of the artificial neural networks (ANNs) for modeling the performance of four commercial two-port surface acoustic wave (SAW) resonators. ANNs are used to reproduce the frequency-dependent behaviour of the short-circuit input admittance, thereby enabling a fast and accurate estimation of the resonant parameters.\",\"PeriodicalId\":308948,\"journal\":{\"name\":\"2021 56th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST)\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 56th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEST52640.2021.9483548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 56th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEST52640.2021.9483548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of Artificial Neural Networks for Modeling of the Frequency-Dependent Performance of Surface Acoustic Wave Resonators
This paper deals with the application of the artificial neural networks (ANNs) for modeling the performance of four commercial two-port surface acoustic wave (SAW) resonators. ANNs are used to reproduce the frequency-dependent behaviour of the short-circuit input admittance, thereby enabling a fast and accurate estimation of the resonant parameters.