降雨与低压系统多维数据库在olap模型中的应用

Kavita Pabreja
{"title":"降雨与低压系统多维数据库在olap模型中的应用","authors":"Kavita Pabreja","doi":"10.1109/ICCMS.2010.228","DOIUrl":null,"url":null,"abstract":"The Multidimensional data model has emerged during the last decade for facilitating the analysis of huge datasets to help in decision-making. This data model can be effectively utilized for analyzing meteorological datasets that are too huge and detailed. In this paper, the technology of dimension modeling has been made use of for analyzing Rainfall and Low Pressure system datasets for the years 1984-2003 using Microsoft SQL Server Business Intelligence Development Studio - OLAP technique.","PeriodicalId":153175,"journal":{"name":"2010 Second International Conference on Computer Modeling and Simulation","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Application of Multidimensional Databases of Rainfall and Low Pressure Systems on OLAP-Based Model\",\"authors\":\"Kavita Pabreja\",\"doi\":\"10.1109/ICCMS.2010.228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Multidimensional data model has emerged during the last decade for facilitating the analysis of huge datasets to help in decision-making. This data model can be effectively utilized for analyzing meteorological datasets that are too huge and detailed. In this paper, the technology of dimension modeling has been made use of for analyzing Rainfall and Low Pressure system datasets for the years 1984-2003 using Microsoft SQL Server Business Intelligence Development Studio - OLAP technique.\",\"PeriodicalId\":153175,\"journal\":{\"name\":\"2010 Second International Conference on Computer Modeling and Simulation\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Second International Conference on Computer Modeling and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCMS.2010.228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Computer Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMS.2010.228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

多维数据模型在过去十年中出现,用于促进对庞大数据集的分析,以帮助决策。该数据模型可以有效地用于分析过于庞大和详细的气象数据集。本文利用Microsoft SQL Server Business Intelligence Development Studio - OLAP技术,利用维数建模技术对1984-2003年降水和低压系统数据集进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Multidimensional Databases of Rainfall and Low Pressure Systems on OLAP-Based Model
The Multidimensional data model has emerged during the last decade for facilitating the analysis of huge datasets to help in decision-making. This data model can be effectively utilized for analyzing meteorological datasets that are too huge and detailed. In this paper, the technology of dimension modeling has been made use of for analyzing Rainfall and Low Pressure system datasets for the years 1984-2003 using Microsoft SQL Server Business Intelligence Development Studio - OLAP technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信