基于VGG16网络的血刺针分类检测方法

Feng Zhao, Baofeng Zhang, Zhili Zhang, Xinghui Zhang, Chunyu Wei
{"title":"基于VGG16网络的血刺针分类检测方法","authors":"Feng Zhao, Baofeng Zhang, Zhili Zhang, Xinghui Zhang, Chunyu Wei","doi":"10.1109/ICMA52036.2021.9512686","DOIUrl":null,"url":null,"abstract":"Detection method based on convolutional neural network aims to classify and detect blood lancet after production. The Canny detection algorithm is used to multi-target detection on blood lancet images. The Canny algorithm extracts the blood lancet target, expands the blood lancet data set through image augmentation technology, and solves sample imbalance. The pre-trained VGG16 model is used for blood lancet classification training and fine-tuning of parameters, and the adjusted network model is used for lancet classification and detection. The comparative experiments of the VGG16 network and the two classification networks of GoogLeNet and ResNet show that the average recognition rate of the VGG16 model for blood lancet classification reaches 98.12%, and the classification and detection ability is better than the comparison algorithm. It proves that the network can complete the classification and recognition of blood lancet, and provide technical support for the intelligent classification of blood lancet after production.","PeriodicalId":339025,"journal":{"name":"2021 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Classification and detection method of Blood lancet based on VGG16 network\",\"authors\":\"Feng Zhao, Baofeng Zhang, Zhili Zhang, Xinghui Zhang, Chunyu Wei\",\"doi\":\"10.1109/ICMA52036.2021.9512686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detection method based on convolutional neural network aims to classify and detect blood lancet after production. The Canny detection algorithm is used to multi-target detection on blood lancet images. The Canny algorithm extracts the blood lancet target, expands the blood lancet data set through image augmentation technology, and solves sample imbalance. The pre-trained VGG16 model is used for blood lancet classification training and fine-tuning of parameters, and the adjusted network model is used for lancet classification and detection. The comparative experiments of the VGG16 network and the two classification networks of GoogLeNet and ResNet show that the average recognition rate of the VGG16 model for blood lancet classification reaches 98.12%, and the classification and detection ability is better than the comparison algorithm. It proves that the network can complete the classification and recognition of blood lancet, and provide technical support for the intelligent classification of blood lancet after production.\",\"PeriodicalId\":339025,\"journal\":{\"name\":\"2021 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"volume\":\"146 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA52036.2021.9512686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA52036.2021.9512686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于卷积神经网络的检测方法旨在对生产后的血针进行分类和检测。将Canny检测算法用于血针图像的多目标检测。Canny算法提取血针目标,通过图像增强技术对血针数据集进行扩展,解决样本不平衡问题。预训练好的VGG16模型用于血刺分类训练和参数微调,调整后的网络模型用于血刺分类检测。VGG16网络与GoogLeNet和ResNet两种分类网络的对比实验表明,VGG16模型对血柳叶刀分类的平均识别率达到98.12%,分类检测能力优于对比算法。实践证明,该网络可以完成血针的分类识别,为血针生产后的智能分类提供技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification and detection method of Blood lancet based on VGG16 network
Detection method based on convolutional neural network aims to classify and detect blood lancet after production. The Canny detection algorithm is used to multi-target detection on blood lancet images. The Canny algorithm extracts the blood lancet target, expands the blood lancet data set through image augmentation technology, and solves sample imbalance. The pre-trained VGG16 model is used for blood lancet classification training and fine-tuning of parameters, and the adjusted network model is used for lancet classification and detection. The comparative experiments of the VGG16 network and the two classification networks of GoogLeNet and ResNet show that the average recognition rate of the VGG16 model for blood lancet classification reaches 98.12%, and the classification and detection ability is better than the comparison algorithm. It proves that the network can complete the classification and recognition of blood lancet, and provide technical support for the intelligent classification of blood lancet after production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信