基于回归的收益预测

Joseph J. Gerakos, R. Gramacy
{"title":"基于回归的收益预测","authors":"Joseph J. Gerakos, R. Gramacy","doi":"10.2139/ssrn.2112137","DOIUrl":null,"url":null,"abstract":"We provide a comprehensive examination of regression-based earnings forecasts. Specifically, we evaluate forecasts of scaled and unscaled net income along a number of relevant dimensions including variable selection, estimation methods, estimation windows, and Winsorization. Overall, we find that forecasts generated using ordinary least squares and lagged net income are broadly more accurate for both earnings constructs. Moreover, at a one year horizon, the random walk model performs as well as modern sophisticated methods that use larger predictor sets. This finding echoes an old result that, given recent applications of forecasts in the literature, may have been forgotten.","PeriodicalId":355269,"journal":{"name":"CGN: Disclosure & Accounting Decisions (Topic)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"Regression-Based Earnings Forecasts\",\"authors\":\"Joseph J. Gerakos, R. Gramacy\",\"doi\":\"10.2139/ssrn.2112137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a comprehensive examination of regression-based earnings forecasts. Specifically, we evaluate forecasts of scaled and unscaled net income along a number of relevant dimensions including variable selection, estimation methods, estimation windows, and Winsorization. Overall, we find that forecasts generated using ordinary least squares and lagged net income are broadly more accurate for both earnings constructs. Moreover, at a one year horizon, the random walk model performs as well as modern sophisticated methods that use larger predictor sets. This finding echoes an old result that, given recent applications of forecasts in the literature, may have been forgotten.\",\"PeriodicalId\":355269,\"journal\":{\"name\":\"CGN: Disclosure & Accounting Decisions (Topic)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CGN: Disclosure & Accounting Decisions (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2112137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CGN: Disclosure & Accounting Decisions (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2112137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

摘要

我们提供了基于回归的盈利预测的全面检查。具体来说,我们沿着一些相关维度评估缩放和未缩放净收入的预测,包括变量选择,估计方法,估计窗口和Winsorization。总体而言,我们发现使用普通最小二乘和滞后净收入生成的预测对两种收益结构都更准确。此外,在一年的范围内,随机漫步模型的表现与使用更大预测集的现代复杂方法一样好。这一发现与一个古老的结果相呼应,考虑到最近预测在文献中的应用,这个结果可能已经被遗忘了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regression-Based Earnings Forecasts
We provide a comprehensive examination of regression-based earnings forecasts. Specifically, we evaluate forecasts of scaled and unscaled net income along a number of relevant dimensions including variable selection, estimation methods, estimation windows, and Winsorization. Overall, we find that forecasts generated using ordinary least squares and lagged net income are broadly more accurate for both earnings constructs. Moreover, at a one year horizon, the random walk model performs as well as modern sophisticated methods that use larger predictor sets. This finding echoes an old result that, given recent applications of forecasts in the literature, may have been forgotten.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信