Yury Stepchenkov, Yury Rogdestvenski, Yury Shikunov, D. Diachenko, Y. Diachenko
{"title":"软误差自定时管道抗扰度的改进","authors":"Yury Stepchenkov, Yury Rogdestvenski, Yury Shikunov, D. Diachenko, Y. Diachenko","doi":"10.1109/ElConRus51938.2021.9396125","DOIUrl":null,"url":null,"abstract":"The paper presents the results of a study of self-timed (ST) digital circuits' soft-error tolerance. Practical ST circuits have a pipeline structure. The combinational parts of the ST pipeline are naturally immune to 72% of short-term soft errors. The proposed circuitry and layout methods increase the ST pipeline combinational part's failure tolerance to 98% and higher. ST pipeline stage register is the most susceptible to soft errors. A typical variant of the ST pipeline register bit unit based on C-elements has a failure tolerance of 83%. The proposed register bit implementation cases increase the failure tolerance of the ST pipeline up to 98%.","PeriodicalId":447345,"journal":{"name":"2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of Self-Timed Pipeline Immunity of Soft Errors\",\"authors\":\"Yury Stepchenkov, Yury Rogdestvenski, Yury Shikunov, D. Diachenko, Y. Diachenko\",\"doi\":\"10.1109/ElConRus51938.2021.9396125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents the results of a study of self-timed (ST) digital circuits' soft-error tolerance. Practical ST circuits have a pipeline structure. The combinational parts of the ST pipeline are naturally immune to 72% of short-term soft errors. The proposed circuitry and layout methods increase the ST pipeline combinational part's failure tolerance to 98% and higher. ST pipeline stage register is the most susceptible to soft errors. A typical variant of the ST pipeline register bit unit based on C-elements has a failure tolerance of 83%. The proposed register bit implementation cases increase the failure tolerance of the ST pipeline up to 98%.\",\"PeriodicalId\":447345,\"journal\":{\"name\":\"2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ElConRus51938.2021.9396125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ElConRus51938.2021.9396125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improvement of Self-Timed Pipeline Immunity of Soft Errors
The paper presents the results of a study of self-timed (ST) digital circuits' soft-error tolerance. Practical ST circuits have a pipeline structure. The combinational parts of the ST pipeline are naturally immune to 72% of short-term soft errors. The proposed circuitry and layout methods increase the ST pipeline combinational part's failure tolerance to 98% and higher. ST pipeline stage register is the most susceptible to soft errors. A typical variant of the ST pipeline register bit unit based on C-elements has a failure tolerance of 83%. The proposed register bit implementation cases increase the failure tolerance of the ST pipeline up to 98%.