{"title":"基于k均值聚类的全双工协同NOMA短包通信","authors":"T. Chu, H. Zepernick, T. Duong","doi":"10.1109/SSP53291.2023.10208051","DOIUrl":null,"url":null,"abstract":"Fifth-generation (5G) and future sixth-generation (6G) mobile networks aim at offering ultra-reliable, low-latency, and massive machine-type communications. In this context, this paper studies full-duplex (FD) cooperative non-orthogonal multiple access (C-NOMA) short-packet communications (SPC) with K-means clustering of user equipment regarding block error rate (BLER) and sum rate. Analytical expressions are derived for the BLER and sum rate allowing to assess the performance of the considered system. The numerical results reveal the benefits of the FD C-NOMA SPC system, illustrate trade-offs between BLER and sum rate, and show the impact of the transmit signal-to-noise ratio and number of channel uses on the performance.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Full-Duplex Cooperative NOMA Short-Packet Communications with K-Means Clustering\",\"authors\":\"T. Chu, H. Zepernick, T. Duong\",\"doi\":\"10.1109/SSP53291.2023.10208051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fifth-generation (5G) and future sixth-generation (6G) mobile networks aim at offering ultra-reliable, low-latency, and massive machine-type communications. In this context, this paper studies full-duplex (FD) cooperative non-orthogonal multiple access (C-NOMA) short-packet communications (SPC) with K-means clustering of user equipment regarding block error rate (BLER) and sum rate. Analytical expressions are derived for the BLER and sum rate allowing to assess the performance of the considered system. The numerical results reveal the benefits of the FD C-NOMA SPC system, illustrate trade-offs between BLER and sum rate, and show the impact of the transmit signal-to-noise ratio and number of channel uses on the performance.\",\"PeriodicalId\":296346,\"journal\":{\"name\":\"2023 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP53291.2023.10208051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10208051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Full-Duplex Cooperative NOMA Short-Packet Communications with K-Means Clustering
Fifth-generation (5G) and future sixth-generation (6G) mobile networks aim at offering ultra-reliable, low-latency, and massive machine-type communications. In this context, this paper studies full-duplex (FD) cooperative non-orthogonal multiple access (C-NOMA) short-packet communications (SPC) with K-means clustering of user equipment regarding block error rate (BLER) and sum rate. Analytical expressions are derived for the BLER and sum rate allowing to assess the performance of the considered system. The numerical results reveal the benefits of the FD C-NOMA SPC system, illustrate trade-offs between BLER and sum rate, and show the impact of the transmit signal-to-noise ratio and number of channel uses on the performance.