具有状态依赖外部输入的递归神经网络的吸引性分析

Gang Baol, Kang Li, Zhenyan Song
{"title":"具有状态依赖外部输入的递归神经网络的吸引性分析","authors":"Gang Baol, Kang Li, Zhenyan Song","doi":"10.1109/ICIST55546.2022.9926830","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel kind of discontinu-ous neural networks which are with state-dependent switching external input. The switched external input is defined as a step function with respect to state value. Firstly, we derive a sufficient condition for network state attractivity by dividing the state space according to the swithed external input function and the activation function. At last, one numerical example verifies our results.","PeriodicalId":211213,"journal":{"name":"2022 12th International Conference on Information Science and Technology (ICIST)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attractivity Analysis for Recurrent Neural Networks with State-dependent External Input\",\"authors\":\"Gang Baol, Kang Li, Zhenyan Song\",\"doi\":\"10.1109/ICIST55546.2022.9926830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a novel kind of discontinu-ous neural networks which are with state-dependent switching external input. The switched external input is defined as a step function with respect to state value. Firstly, we derive a sufficient condition for network state attractivity by dividing the state space according to the swithed external input function and the activation function. At last, one numerical example verifies our results.\",\"PeriodicalId\":211213,\"journal\":{\"name\":\"2022 12th International Conference on Information Science and Technology (ICIST)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 12th International Conference on Information Science and Technology (ICIST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIST55546.2022.9926830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 12th International Conference on Information Science and Technology (ICIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST55546.2022.9926830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种具有状态依赖切换外部输入的新型不连续神经网络。被切换的外部输入被定义为关于状态值的阶跃函数。首先,根据变换后的外部输入函数和激活函数划分状态空间,得到网络状态吸引的充分条件;最后通过一个数值算例验证了我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attractivity Analysis for Recurrent Neural Networks with State-dependent External Input
This paper introduces a novel kind of discontinu-ous neural networks which are with state-dependent switching external input. The switched external input is defined as a step function with respect to state value. Firstly, we derive a sufficient condition for network state attractivity by dividing the state space according to the swithed external input function and the activation function. At last, one numerical example verifies our results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信