基于TFLITE-SOC的加速器设计空间探索和端到端DNN评估

Nicolas Bohm Agostini, Shi Dong, Elmira Karimi, Marti Torrents Lapuerta, José Cano, José L. Abellán, D. Kaeli
{"title":"基于TFLITE-SOC的加速器设计空间探索和端到端DNN评估","authors":"Nicolas Bohm Agostini, Shi Dong, Elmira Karimi, Marti Torrents Lapuerta, José Cano, José L. Abellán, D. Kaeli","doi":"10.1109/SBAC-PAD49847.2020.00013","DOIUrl":null,"url":null,"abstract":"Recently there has been a rapidly growing demand for faster machine learning (ML) processing in data centers and migration of ML inference applications to edge devices. These developments have prompted both industry and academia to explore custom accelerators to optimize ML executions for performance and power. However, identifying which accelerator is best equipped for performing a particular ML task is challenging, especially given the growing range of ML tasks, the number of target environments, and the limited number of integrated modeling tools. To tackle this issue, it is of paramount importance to provide the computer architecture research community with a common framework capable of performing a comprehensive, uniform, and fair comparison across different accelerator designs targeting a particular ML task. To this aim, we propose a new framework named TFLITE-SOC (System On Chip) that integrates a lightweight system modeling library (SystemC) for fast design space exploration of custom ML accelerators into the build/execution environment of Tensorflow Lite (TFLite), a highly popular ML framework for ML inference. Using this approach, we are able to model and evaluate new accelerators developed in SystemC by leveraging the language's hierarchical design capabilities, resulting in faster design prototyping. Furthermore, any accelerator designed using TFLITE-SOC can be benchmarked for inference with any DNN model compatible with TFLite, which enables end-to-end DNN processing and detailed (i.e., per DNN layer) performance analysis. In addition to providing rapid prototyping, integrated benchmarking, and a range of platform configurations, TFLITE-SOC offers comprehensive performance analysis of accelerator occupancy and execution time breakdown as well as a rich set of modules that can be used by new accelerators to implement scaling up studies and optimized memory transfer protocols. We present our framework and demonstrate its utility by considering the design space of a TPU-like systolic array and describing possible directions for optimization. Using a compression technique, we implement an optimization targeting reducing the memory traffic between DRAM and on-device buffers. Compared to the baseline accelerator, our optimized design shows up to 1.26x speedup on accelerated operations and up to 1.19x speedup on end-to-end DNN execution.","PeriodicalId":202581,"journal":{"name":"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Design Space Exploration of Accelerators and End-to-End DNN Evaluation with TFLITE-SOC\",\"authors\":\"Nicolas Bohm Agostini, Shi Dong, Elmira Karimi, Marti Torrents Lapuerta, José Cano, José L. Abellán, D. Kaeli\",\"doi\":\"10.1109/SBAC-PAD49847.2020.00013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently there has been a rapidly growing demand for faster machine learning (ML) processing in data centers and migration of ML inference applications to edge devices. These developments have prompted both industry and academia to explore custom accelerators to optimize ML executions for performance and power. However, identifying which accelerator is best equipped for performing a particular ML task is challenging, especially given the growing range of ML tasks, the number of target environments, and the limited number of integrated modeling tools. To tackle this issue, it is of paramount importance to provide the computer architecture research community with a common framework capable of performing a comprehensive, uniform, and fair comparison across different accelerator designs targeting a particular ML task. To this aim, we propose a new framework named TFLITE-SOC (System On Chip) that integrates a lightweight system modeling library (SystemC) for fast design space exploration of custom ML accelerators into the build/execution environment of Tensorflow Lite (TFLite), a highly popular ML framework for ML inference. Using this approach, we are able to model and evaluate new accelerators developed in SystemC by leveraging the language's hierarchical design capabilities, resulting in faster design prototyping. Furthermore, any accelerator designed using TFLITE-SOC can be benchmarked for inference with any DNN model compatible with TFLite, which enables end-to-end DNN processing and detailed (i.e., per DNN layer) performance analysis. In addition to providing rapid prototyping, integrated benchmarking, and a range of platform configurations, TFLITE-SOC offers comprehensive performance analysis of accelerator occupancy and execution time breakdown as well as a rich set of modules that can be used by new accelerators to implement scaling up studies and optimized memory transfer protocols. We present our framework and demonstrate its utility by considering the design space of a TPU-like systolic array and describing possible directions for optimization. Using a compression technique, we implement an optimization targeting reducing the memory traffic between DRAM and on-device buffers. Compared to the baseline accelerator, our optimized design shows up to 1.26x speedup on accelerated operations and up to 1.19x speedup on end-to-end DNN execution.\",\"PeriodicalId\":202581,\"journal\":{\"name\":\"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBAC-PAD49847.2020.00013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBAC-PAD49847.2020.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

最近,数据中心对更快的机器学习(ML)处理以及将ML推理应用程序迁移到边缘设备的需求迅速增长。这些发展促使工业界和学术界探索定制加速器,以优化机器学习执行的性能和功率。然而,确定哪个加速器最适合执行特定的机器学习任务是具有挑战性的,特别是考虑到机器学习任务的范围不断扩大、目标环境的数量不断增加,以及集成建模工具的数量有限。为了解决这个问题,为计算机体系结构研究界提供一个通用的框架是至关重要的,这个框架能够在针对特定ML任务的不同加速器设计之间进行全面、统一和公平的比较。使用这种方法,我们可以利用SystemC语言的分层设计功能,对在SystemC中开发的新加速器进行建模和评估,从而实现更快的设计原型。此外,使用TFLite - soc设计的任何加速器都可以通过与TFLite兼容的任何DNN模型进行基准测试,从而实现端到端DNN处理和详细(即每个DNN层)性能分析。除了提供快速原型设计、集成基准测试和一系列平台配置外,TFLITE-SOC还提供加速器占用率和执行时间分解的全面性能分析,以及一组丰富的模块,可用于新加速器实施扩展研究和优化内存传输协议。我们提出了我们的框架,并通过考虑类似tpu的收缩阵列的设计空间和描述优化的可能方向来展示其实用性。使用压缩技术,我们实现了一种优化,目标是减少DRAM和设备上缓冲区之间的内存流量。与基线加速器相比,我们的优化设计在加速操作上加速高达1.26倍,在端到端DNN执行上加速高达1.19倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design Space Exploration of Accelerators and End-to-End DNN Evaluation with TFLITE-SOC
Recently there has been a rapidly growing demand for faster machine learning (ML) processing in data centers and migration of ML inference applications to edge devices. These developments have prompted both industry and academia to explore custom accelerators to optimize ML executions for performance and power. However, identifying which accelerator is best equipped for performing a particular ML task is challenging, especially given the growing range of ML tasks, the number of target environments, and the limited number of integrated modeling tools. To tackle this issue, it is of paramount importance to provide the computer architecture research community with a common framework capable of performing a comprehensive, uniform, and fair comparison across different accelerator designs targeting a particular ML task. To this aim, we propose a new framework named TFLITE-SOC (System On Chip) that integrates a lightweight system modeling library (SystemC) for fast design space exploration of custom ML accelerators into the build/execution environment of Tensorflow Lite (TFLite), a highly popular ML framework for ML inference. Using this approach, we are able to model and evaluate new accelerators developed in SystemC by leveraging the language's hierarchical design capabilities, resulting in faster design prototyping. Furthermore, any accelerator designed using TFLITE-SOC can be benchmarked for inference with any DNN model compatible with TFLite, which enables end-to-end DNN processing and detailed (i.e., per DNN layer) performance analysis. In addition to providing rapid prototyping, integrated benchmarking, and a range of platform configurations, TFLITE-SOC offers comprehensive performance analysis of accelerator occupancy and execution time breakdown as well as a rich set of modules that can be used by new accelerators to implement scaling up studies and optimized memory transfer protocols. We present our framework and demonstrate its utility by considering the design space of a TPU-like systolic array and describing possible directions for optimization. Using a compression technique, we implement an optimization targeting reducing the memory traffic between DRAM and on-device buffers. Compared to the baseline accelerator, our optimized design shows up to 1.26x speedup on accelerated operations and up to 1.19x speedup on end-to-end DNN execution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信