性骚扰个人故事分类的量子启发密度矩阵编码器

Peng Yan, Linjing Li, Weiyun Chen, D. Zeng
{"title":"性骚扰个人故事分类的量子启发密度矩阵编码器","authors":"Peng Yan, Linjing Li, Weiyun Chen, D. Zeng","doi":"10.1109/ISI.2019.8823281","DOIUrl":null,"url":null,"abstract":"Nowadays, more and more sexual harassment personal stories have been shared on social media. To better monitor and analyze the extent of sexual harassment based on these social media data, we need to automatically categorize different forms of sexual harassment personal stories. Existing methods apply convolutional neural network (CNN) with different convolution window sizes to this text classification task. However, the previous CNN models do not provide an effective way to synthesize window size-related local representations, but simply concatenate all local representations together. To address this problem, we propose a new density matrix encoder, inspired by quantum mechanics, to encode local representations as particles in quantum state and generate a global representation as quantum mixed system for each story. Experiment on SafeCity dataset shows that our model outperforms CNN baseline and achieves better performance than the state-of-the-art model when considering both accuracy and speed, demonstrating the effectiveness of the proposed density matrix encoder.","PeriodicalId":156130,"journal":{"name":"2019 IEEE International Conference on Intelligence and Security Informatics (ISI)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Quantum-Inspired Density Matrix Encoder for Sexual Harassment Personal Stories Classification\",\"authors\":\"Peng Yan, Linjing Li, Weiyun Chen, D. Zeng\",\"doi\":\"10.1109/ISI.2019.8823281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, more and more sexual harassment personal stories have been shared on social media. To better monitor and analyze the extent of sexual harassment based on these social media data, we need to automatically categorize different forms of sexual harassment personal stories. Existing methods apply convolutional neural network (CNN) with different convolution window sizes to this text classification task. However, the previous CNN models do not provide an effective way to synthesize window size-related local representations, but simply concatenate all local representations together. To address this problem, we propose a new density matrix encoder, inspired by quantum mechanics, to encode local representations as particles in quantum state and generate a global representation as quantum mixed system for each story. Experiment on SafeCity dataset shows that our model outperforms CNN baseline and achieves better performance than the state-of-the-art model when considering both accuracy and speed, demonstrating the effectiveness of the proposed density matrix encoder.\",\"PeriodicalId\":156130,\"journal\":{\"name\":\"2019 IEEE International Conference on Intelligence and Security Informatics (ISI)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Intelligence and Security Informatics (ISI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISI.2019.8823281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Intelligence and Security Informatics (ISI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2019.8823281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

如今,越来越多的性骚扰个人故事在社交媒体上被分享。为了根据这些社交媒体数据更好地监控和分析性骚扰的程度,我们需要对不同形式的性骚扰个人故事进行自动分类。现有方法采用不同卷积窗口大小的卷积神经网络(CNN)来完成文本分类任务。然而,以前的CNN模型并没有提供一种有效的方法来合成与窗口大小相关的局部表示,而是简单地将所有的局部表示连接在一起。为了解决这个问题,我们提出了一种新的密度矩阵编码器,受量子力学的启发,将局部表示编码为量子态的粒子,并为每个故事生成一个全局表示作为量子混合系统。在safety数据集上的实验表明,我们的模型在考虑精度和速度时优于CNN基线,并且比最先进的模型取得了更好的性能,证明了所提出的密度矩阵编码器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum-Inspired Density Matrix Encoder for Sexual Harassment Personal Stories Classification
Nowadays, more and more sexual harassment personal stories have been shared on social media. To better monitor and analyze the extent of sexual harassment based on these social media data, we need to automatically categorize different forms of sexual harassment personal stories. Existing methods apply convolutional neural network (CNN) with different convolution window sizes to this text classification task. However, the previous CNN models do not provide an effective way to synthesize window size-related local representations, but simply concatenate all local representations together. To address this problem, we propose a new density matrix encoder, inspired by quantum mechanics, to encode local representations as particles in quantum state and generate a global representation as quantum mixed system for each story. Experiment on SafeCity dataset shows that our model outperforms CNN baseline and achieves better performance than the state-of-the-art model when considering both accuracy and speed, demonstrating the effectiveness of the proposed density matrix encoder.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信