学习和发展战斗游戏控制器

Luis Peña, Sascha Ossowski, J. Sánchez, S. Lucas
{"title":"学习和发展战斗游戏控制器","authors":"Luis Peña, Sascha Ossowski, J. Sánchez, S. Lucas","doi":"10.1109/CIG.2012.6374156","DOIUrl":null,"url":null,"abstract":"The design of the control mechanisms for the agents in modern video games is one of the main tasks involved in the game design process. Designing controllers grows in complexity as either the number of different game agents or the number of possible actions increase. An alternative mechanism to hard-coding agent controllers is the use of learning techniques. This paper introduces two new variants of a hybrid algorithm, named WEREWoLF and WERESARSA, that combine evolutionary techniques with reinforcement learning. Both new algorithms allow a group of different reinforcement learning controllers to be recombined in an iterative process that uses both evolution and learning. These new algorithms have been tested against different instances of predefined controllers on a one-on-one combat simulator, with underlying game mechanics similar to classic arcade games of this kind. The results have been compared with other reinforcement learning controllers, showing that WEREWoLF outperforms the other algorithms for a series of different learning conditions.","PeriodicalId":288052,"journal":{"name":"2012 IEEE Conference on Computational Intelligence and Games (CIG)","volume":"536 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Learning and evolving combat game controllers\",\"authors\":\"Luis Peña, Sascha Ossowski, J. Sánchez, S. Lucas\",\"doi\":\"10.1109/CIG.2012.6374156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design of the control mechanisms for the agents in modern video games is one of the main tasks involved in the game design process. Designing controllers grows in complexity as either the number of different game agents or the number of possible actions increase. An alternative mechanism to hard-coding agent controllers is the use of learning techniques. This paper introduces two new variants of a hybrid algorithm, named WEREWoLF and WERESARSA, that combine evolutionary techniques with reinforcement learning. Both new algorithms allow a group of different reinforcement learning controllers to be recombined in an iterative process that uses both evolution and learning. These new algorithms have been tested against different instances of predefined controllers on a one-on-one combat simulator, with underlying game mechanics similar to classic arcade games of this kind. The results have been compared with other reinforcement learning controllers, showing that WEREWoLF outperforms the other algorithms for a series of different learning conditions.\",\"PeriodicalId\":288052,\"journal\":{\"name\":\"2012 IEEE Conference on Computational Intelligence and Games (CIG)\",\"volume\":\"536 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Conference on Computational Intelligence and Games (CIG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2012.6374156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Conference on Computational Intelligence and Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2012.6374156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

现代电子游戏中智能体的控制机制设计是游戏设计过程中的主要任务之一。随着不同游戏代理的数量或可能的行动数量的增加,设计控制器的复杂性也在增加。硬编码代理控制器的另一种机制是使用学习技术。本文介绍了一种混合算法的两个新变体,名为WEREWoLF和WERESARSA,它们将进化技术与强化学习相结合。这两种新算法都允许在使用进化和学习的迭代过程中重新组合一组不同的强化学习控制器。这些新算法已经在一对一战斗模拟器上针对不同的预定义控制器实例进行了测试,其潜在的游戏机制类似于这类经典街机游戏。结果与其他强化学习控制器进行了比较,表明狼人在一系列不同的学习条件下优于其他算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning and evolving combat game controllers
The design of the control mechanisms for the agents in modern video games is one of the main tasks involved in the game design process. Designing controllers grows in complexity as either the number of different game agents or the number of possible actions increase. An alternative mechanism to hard-coding agent controllers is the use of learning techniques. This paper introduces two new variants of a hybrid algorithm, named WEREWoLF and WERESARSA, that combine evolutionary techniques with reinforcement learning. Both new algorithms allow a group of different reinforcement learning controllers to be recombined in an iterative process that uses both evolution and learning. These new algorithms have been tested against different instances of predefined controllers on a one-on-one combat simulator, with underlying game mechanics similar to classic arcade games of this kind. The results have been compared with other reinforcement learning controllers, showing that WEREWoLF outperforms the other algorithms for a series of different learning conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信