不同分类器的最小二乘线性回归在心血管呼吸检测中的性能分析

G. C, G. M., G. P., Priyanka G S, V. B
{"title":"不同分类器的最小二乘线性回归在心血管呼吸检测中的性能分析","authors":"G. C, G. M., G. P., Priyanka G S, V. B","doi":"10.1109/STCR55312.2022.10009354","DOIUrl":null,"url":null,"abstract":"In this study, the PPG signal was taken from a capnography data source and used along with statistical characteristics and machine learning techniques to diagnose respiratory disorders. After the statistical properties of the data have been extracted using a method called least square linear regression, the signal is then processed by a number of different classification tasks, and the outcomes of the classification algorithm are examined. Results show that the linear regression and nonlinear classifiers gives the best accuracy of 88.11% and 85.73% for both normal and respiratory disease cases.","PeriodicalId":338691,"journal":{"name":"2022 Smart Technologies, Communication and Robotics (STCR)","volume":"386 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Analysis of Least Square Linear Regression with Various Classifiers for Cardiovascular Respiratory Detection from Capnography\",\"authors\":\"G. C, G. M., G. P., Priyanka G S, V. B\",\"doi\":\"10.1109/STCR55312.2022.10009354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the PPG signal was taken from a capnography data source and used along with statistical characteristics and machine learning techniques to diagnose respiratory disorders. After the statistical properties of the data have been extracted using a method called least square linear regression, the signal is then processed by a number of different classification tasks, and the outcomes of the classification algorithm are examined. Results show that the linear regression and nonlinear classifiers gives the best accuracy of 88.11% and 85.73% for both normal and respiratory disease cases.\",\"PeriodicalId\":338691,\"journal\":{\"name\":\"2022 Smart Technologies, Communication and Robotics (STCR)\",\"volume\":\"386 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Smart Technologies, Communication and Robotics (STCR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STCR55312.2022.10009354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Smart Technologies, Communication and Robotics (STCR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STCR55312.2022.10009354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,PPG信号取自一个毛细管造影数据源,并与统计特征和机器学习技术一起用于诊断呼吸系统疾病。在使用一种称为最小二乘线性回归的方法提取数据的统计特性之后,信号将被许多不同的分类任务处理,并检查分类算法的结果。结果表明,线性回归和非线性分类器对正常病例和呼吸系统疾病的准确率分别为88.11%和85.73%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Analysis of Least Square Linear Regression with Various Classifiers for Cardiovascular Respiratory Detection from Capnography
In this study, the PPG signal was taken from a capnography data source and used along with statistical characteristics and machine learning techniques to diagnose respiratory disorders. After the statistical properties of the data have been extracted using a method called least square linear regression, the signal is then processed by a number of different classification tasks, and the outcomes of the classification algorithm are examined. Results show that the linear regression and nonlinear classifiers gives the best accuracy of 88.11% and 85.73% for both normal and respiratory disease cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信