基于fpga的高效卷积神经网络加速器

Archana V S
{"title":"基于fpga的高效卷积神经网络加速器","authors":"Archana V S","doi":"10.1109/IPRECON55716.2022.10059556","DOIUrl":null,"url":null,"abstract":"Convolution Neural Networks (CNNs) have gained much popularity in computer vision applications. However, CNNs are computationally intensive and hence it is very difficult to implement CNNs in embedded systems. Thus there is a high demand for resource efficient and low delay CNN accelerators. In this work, an FPGA-based CNN accelerator is designed. In the proposed accelerator, the convolution unit is designed using Karatsuba multiplier which reduces the overall resource utilisation and delay of the CNN accelerator. Simulations are performed using Vivado 2016.4 in Verilog HDL and performance parameters are measured on a Xilinx Artix-7 AC701 evaluation board.","PeriodicalId":407222,"journal":{"name":"2022 IEEE International Power and Renewable Energy Conference (IPRECON)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An FPGA-Based Computation-Efficient Convolutional Neural Network Accelerator\",\"authors\":\"Archana V S\",\"doi\":\"10.1109/IPRECON55716.2022.10059556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolution Neural Networks (CNNs) have gained much popularity in computer vision applications. However, CNNs are computationally intensive and hence it is very difficult to implement CNNs in embedded systems. Thus there is a high demand for resource efficient and low delay CNN accelerators. In this work, an FPGA-based CNN accelerator is designed. In the proposed accelerator, the convolution unit is designed using Karatsuba multiplier which reduces the overall resource utilisation and delay of the CNN accelerator. Simulations are performed using Vivado 2016.4 in Verilog HDL and performance parameters are measured on a Xilinx Artix-7 AC701 evaluation board.\",\"PeriodicalId\":407222,\"journal\":{\"name\":\"2022 IEEE International Power and Renewable Energy Conference (IPRECON)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Power and Renewable Energy Conference (IPRECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPRECON55716.2022.10059556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Power and Renewable Energy Conference (IPRECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPRECON55716.2022.10059556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卷积神经网络(cnn)在计算机视觉应用中得到了广泛的应用。然而,cnn的计算量非常大,因此在嵌入式系统中实现cnn非常困难。因此,对资源高效、低延迟的CNN加速器提出了很高的要求。本文设计了一种基于fpga的CNN加速器。在所提出的加速器中,使用Karatsuba乘法器设计卷积单元,降低了CNN加速器的整体资源利用率和延迟。在Verilog HDL语言下使用Vivado 2016.4进行仿真,并在Xilinx Artix-7 AC701评估板上测量性能参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An FPGA-Based Computation-Efficient Convolutional Neural Network Accelerator
Convolution Neural Networks (CNNs) have gained much popularity in computer vision applications. However, CNNs are computationally intensive and hence it is very difficult to implement CNNs in embedded systems. Thus there is a high demand for resource efficient and low delay CNN accelerators. In this work, an FPGA-based CNN accelerator is designed. In the proposed accelerator, the convolution unit is designed using Karatsuba multiplier which reduces the overall resource utilisation and delay of the CNN accelerator. Simulations are performed using Vivado 2016.4 in Verilog HDL and performance parameters are measured on a Xilinx Artix-7 AC701 evaluation board.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信