de Rham复合体的扰动

Ihsane Malass, N. Tarkhanov
{"title":"de Rham复合体的扰动","authors":"Ihsane Malass, N. Tarkhanov","doi":"10.17516/1997-1397-2020-13-5-519-532","DOIUrl":null,"url":null,"abstract":"We consider a perturbation of the de Rham complex on a compact manifold with boundary. This perturbation goes beyond the framework of complexes, and so cohomology does not apply to it. On the other hand, its curvature is \"small\", hence there is a natural way to introduce an Euler characteristic and develop a Lefschetz theory for the perturbation. This work is intended as an attempt to develop a cohomology theory for arbitrary sequences of linear mappings","PeriodicalId":422202,"journal":{"name":"Journal of Siberian Federal University. Mathematics and Physics","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Perturbation of the de Rham Complex\",\"authors\":\"Ihsane Malass, N. Tarkhanov\",\"doi\":\"10.17516/1997-1397-2020-13-5-519-532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a perturbation of the de Rham complex on a compact manifold with boundary. This perturbation goes beyond the framework of complexes, and so cohomology does not apply to it. On the other hand, its curvature is \\\"small\\\", hence there is a natural way to introduce an Euler characteristic and develop a Lefschetz theory for the perturbation. This work is intended as an attempt to develop a cohomology theory for arbitrary sequences of linear mappings\",\"PeriodicalId\":422202,\"journal\":{\"name\":\"Journal of Siberian Federal University. Mathematics and Physics\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Siberian Federal University. Mathematics and Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17516/1997-1397-2020-13-5-519-532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University. Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1997-1397-2020-13-5-519-532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑具有边界的紧流形上的de Rham复形的摄动。这种扰动超出了复合体的范围,因此上同性不适用于它。另一方面,它的曲率是“小”的,因此有一个自然的方法来引入欧拉特性,并为微扰发展一个Lefschetz理论。这项工作的目的是作为一个尝试,以发展一个上同调理论的任意序列的线性映射
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Perturbation of the de Rham Complex
We consider a perturbation of the de Rham complex on a compact manifold with boundary. This perturbation goes beyond the framework of complexes, and so cohomology does not apply to it. On the other hand, its curvature is "small", hence there is a natural way to introduce an Euler characteristic and develop a Lefschetz theory for the perturbation. This work is intended as an attempt to develop a cohomology theory for arbitrary sequences of linear mappings
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信