基于时空概率框架的原子人类动作分割

Duan-Yu Chen, S. Shih, H. Liao
{"title":"基于时空概率框架的原子人类动作分割","authors":"Duan-Yu Chen, S. Shih, H. Liao","doi":"10.1109/IIH-MSP.2006.59","DOIUrl":null,"url":null,"abstract":"In this paper, a framework for automatic atomic human action segmentation in continuous action sequences is proposed A star figure enclosed by a bounding convex polygon is used to effectively and uniquely represent the extremities of the silhouette of a human body. Thus, human actions are recorded as a sequence of the starJigure 's parameters, which is then used for action modeling. To model human actions in a compact manner while characterizing their spatiotemporal distributions, star $@re parameters are represented by Gaussian mixture models (GMM). Experiments to evaluate the performance of the proposed framework show that it can segment continuous human actions in an eficient and effective manner.","PeriodicalId":272579,"journal":{"name":"2006 International Conference on Intelligent Information Hiding and Multimedia","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Atomic Human Action Segmentation Using a Spatio-Temporal Probabilistic Framework\",\"authors\":\"Duan-Yu Chen, S. Shih, H. Liao\",\"doi\":\"10.1109/IIH-MSP.2006.59\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a framework for automatic atomic human action segmentation in continuous action sequences is proposed A star figure enclosed by a bounding convex polygon is used to effectively and uniquely represent the extremities of the silhouette of a human body. Thus, human actions are recorded as a sequence of the starJigure 's parameters, which is then used for action modeling. To model human actions in a compact manner while characterizing their spatiotemporal distributions, star $@re parameters are represented by Gaussian mixture models (GMM). Experiments to evaluate the performance of the proposed framework show that it can segment continuous human actions in an eficient and effective manner.\",\"PeriodicalId\":272579,\"journal\":{\"name\":\"2006 International Conference on Intelligent Information Hiding and Multimedia\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Conference on Intelligent Information Hiding and Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIH-MSP.2006.59\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Intelligent Information Hiding and Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIH-MSP.2006.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种连续动作序列中原子人体动作自动分割的框架,该框架采用边界凸多边形包围的星形图形来有效、唯一地表示人体轮廓的末端。因此,人类的动作被记录为starJigure的参数序列,然后用于动作建模。为了以紧凑的方式模拟人类行为,同时表征其时空分布,star $@re参数由高斯混合模型(GMM)表示。实验结果表明,该框架能够高效地分割连续的人类行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Atomic Human Action Segmentation Using a Spatio-Temporal Probabilistic Framework
In this paper, a framework for automatic atomic human action segmentation in continuous action sequences is proposed A star figure enclosed by a bounding convex polygon is used to effectively and uniquely represent the extremities of the silhouette of a human body. Thus, human actions are recorded as a sequence of the starJigure 's parameters, which is then used for action modeling. To model human actions in a compact manner while characterizing their spatiotemporal distributions, star $@re parameters are represented by Gaussian mixture models (GMM). Experiments to evaluate the performance of the proposed framework show that it can segment continuous human actions in an eficient and effective manner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信