瞬态对流扩散方程最优控制问题的自适应间断伽辽金逼近

Hamdullah Yücel, M. Stoll, P. Benner
{"title":"瞬态对流扩散方程最优控制问题的自适应间断伽辽金逼近","authors":"Hamdullah Yücel, M. Stoll, P. Benner","doi":"10.1553/ETNA_VOL48S407","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate a posteriori error estimates of a control-constrained optimal control problem governed by a time-dependent convection diffusion equation. The control constraints are handled by using the primal-dual active set algorithm as a semi-smooth Newton method and by adding a Moreau-Yosida-type penalty function to the cost functional. Residual-based error estimators are proposed for both approaches. The derived error estimators are used as error indicators to guide the mesh refinements. A symmetric interior penalty Galerkin method in space and a backward Euler method in time are applied in order to discretize the optimization problem. Numerical results are presented, which illustrate the performance of the proposed error estimators.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive discontinuous Galerkin approximation of optimal control problems governed by transient convection-diffusion equations\",\"authors\":\"Hamdullah Yücel, M. Stoll, P. Benner\",\"doi\":\"10.1553/ETNA_VOL48S407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate a posteriori error estimates of a control-constrained optimal control problem governed by a time-dependent convection diffusion equation. The control constraints are handled by using the primal-dual active set algorithm as a semi-smooth Newton method and by adding a Moreau-Yosida-type penalty function to the cost functional. Residual-based error estimators are proposed for both approaches. The derived error estimators are used as error indicators to guide the mesh refinements. A symmetric interior penalty Galerkin method in space and a backward Euler method in time are applied in order to discretize the optimization problem. Numerical results are presented, which illustrate the performance of the proposed error estimators.\",\"PeriodicalId\":282695,\"journal\":{\"name\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1553/ETNA_VOL48S407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/ETNA_VOL48S407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了一类由时变对流扩散方程控制的控制约束最优控制问题的后验误差估计。采用原始对偶活动集算法作为半光滑牛顿方法,并在代价泛函中添加moreau - yosida型惩罚函数来处理控制约束。对这两种方法都提出了基于残差的误差估计。将得到的误差估计量作为误差指标来指导网格的细化。在空间上采用对称内罚伽辽金法,在时间上采用倒推欧拉法对优化问题进行离散化。最后给出了数值结果,验证了所提误差估计器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive discontinuous Galerkin approximation of optimal control problems governed by transient convection-diffusion equations
In this paper, we investigate a posteriori error estimates of a control-constrained optimal control problem governed by a time-dependent convection diffusion equation. The control constraints are handled by using the primal-dual active set algorithm as a semi-smooth Newton method and by adding a Moreau-Yosida-type penalty function to the cost functional. Residual-based error estimators are proposed for both approaches. The derived error estimators are used as error indicators to guide the mesh refinements. A symmetric interior penalty Galerkin method in space and a backward Euler method in time are applied in order to discretize the optimization problem. Numerical results are presented, which illustrate the performance of the proposed error estimators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信