{"title":"一个远程实时神经渲染框架","authors":"Yuichi Hiroi, Yuta Itoh, J. Rekimoto","doi":"10.1145/3562939.3565616","DOIUrl":null,"url":null,"abstract":"While presenting a photorealistic appearance plays a major role in immersion in Augmented Virtuality environment, displaying that of real objects remains a challenge. Recent developments in photogrammetry have facilitated the incorporation of real objects into virtual space. However, reproducing complex appearances, such as subsurface scattering and transparency, still requires a dedicated environment for measurement and possesses a trade-off between rendering quality and frame rate. Our NeARportation framework combines server–client bidirectional communication and neural rendering to resolve these trade-offs. Neural rendering on the server receives the client’s head posture and generates a novel-view image with realistic appearance reproduction that is streamed onto the client’s display. By applying our framework to a stereoscopic display, we confirm that it can display a high-fidelity appearance on full-HD stereo videos at 35-40 frames per second (fps) according to the user’s head motion.","PeriodicalId":134843,"journal":{"name":"Proceedings of the 28th ACM Symposium on Virtual Reality Software and Technology","volume":"348 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"NeARportation: A Remote Real-time Neural Rendering Framework\",\"authors\":\"Yuichi Hiroi, Yuta Itoh, J. Rekimoto\",\"doi\":\"10.1145/3562939.3565616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While presenting a photorealistic appearance plays a major role in immersion in Augmented Virtuality environment, displaying that of real objects remains a challenge. Recent developments in photogrammetry have facilitated the incorporation of real objects into virtual space. However, reproducing complex appearances, such as subsurface scattering and transparency, still requires a dedicated environment for measurement and possesses a trade-off between rendering quality and frame rate. Our NeARportation framework combines server–client bidirectional communication and neural rendering to resolve these trade-offs. Neural rendering on the server receives the client’s head posture and generates a novel-view image with realistic appearance reproduction that is streamed onto the client’s display. By applying our framework to a stereoscopic display, we confirm that it can display a high-fidelity appearance on full-HD stereo videos at 35-40 frames per second (fps) according to the user’s head motion.\",\"PeriodicalId\":134843,\"journal\":{\"name\":\"Proceedings of the 28th ACM Symposium on Virtual Reality Software and Technology\",\"volume\":\"348 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th ACM Symposium on Virtual Reality Software and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3562939.3565616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th ACM Symposium on Virtual Reality Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3562939.3565616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
NeARportation: A Remote Real-time Neural Rendering Framework
While presenting a photorealistic appearance plays a major role in immersion in Augmented Virtuality environment, displaying that of real objects remains a challenge. Recent developments in photogrammetry have facilitated the incorporation of real objects into virtual space. However, reproducing complex appearances, such as subsurface scattering and transparency, still requires a dedicated environment for measurement and possesses a trade-off between rendering quality and frame rate. Our NeARportation framework combines server–client bidirectional communication and neural rendering to resolve these trade-offs. Neural rendering on the server receives the client’s head posture and generates a novel-view image with realistic appearance reproduction that is streamed onto the client’s display. By applying our framework to a stereoscopic display, we confirm that it can display a high-fidelity appearance on full-HD stereo videos at 35-40 frames per second (fps) according to the user’s head motion.