水下全息术:过去与未来

J. Watson
{"title":"水下全息术:过去与未来","authors":"J. Watson","doi":"10.1117/12.677172","DOIUrl":null,"url":null,"abstract":"Holography is a well-known optical technique which can provide valuable information on the location and distribution of small particles in three-dimensional space. For several years now, we have utilised holography for high-precision subsea inspection and measurement. One specific application which spurred much of our work was the need for high-precision inspection and analysis of plankton sizes, distribution and species identification. To this end we have developed a subsea holographic camera (HoloMar) for recording of plankton and other marine organisms in situ in their natural environment. This camera is unique in that it is able to record simultaneous in-line and off-axis holograms to cover a range of size of marine organisms from a few microns to tens of millimetres and at concentrations from a few particles per cubic centimetre to dense aggregates. Holograms of aquatic systems of up to 50000 cm3 volume (off-axis) and 9500 cm3 (in-line), have been recorded in situ, using a pulsed laser (Q-switched, frequency-doubled Nd-YAG, 532 nm). The use of a pulsed laser effectively \"freezes\" the scene at a given instant. Although the recording of the holograms takes place in water, replay of the image is carried out in the laboratory in air, using the projected (real) image mode of reconstruction. By precision translation of a computer-controlled video-camera through the replayed image volume and performing \"optical sectioning\" on the image, individual organisms can be isolated and their size, shape and relative location precisely determined. Image processing algorithms, will allow optimisation of the holographic image together with automated identification of individual species and enumeration of concentrations. The local interactions between different organisms and particles can be observed, recorded and quantitatively determined. Following initial laboratory and observation tank testing, the holo-camera was deployed in a sea loch in the West of Scotland to a depth of 100 m and over 300 holograms recorded. However, the HoloMar camera is physically large and heavy and difficult to deploy. It is also based on the use of photographic emulsions to record the holograms. To overcome some of these difficulties we are now developing a new holographic camera (eHoloCam) based on digital holography. In digital or \"eHolography\", a hologram is directly electronically recorded onto a CCD or CMOS sensor and then numerically reconstructed by simulation of the optical hologram reconstruction. The immediate advantages of this new camera are compactness, ease-of-use and speed of response, but at the expense of restricted off-axis recording angles and reduced recording volume. In this paper we describe both approaches, the use of holography for analysis of marine organisms and the results obtained in the field. We also describe recent work, using both photo and digital holography, to study the behaviour of sediments in river estuaries and outline future applications of underwater holography.","PeriodicalId":266048,"journal":{"name":"International Conference on Holography, Optical Recording, and Processing of Information","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2006-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Underwater holography: past and future\",\"authors\":\"J. Watson\",\"doi\":\"10.1117/12.677172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Holography is a well-known optical technique which can provide valuable information on the location and distribution of small particles in three-dimensional space. For several years now, we have utilised holography for high-precision subsea inspection and measurement. One specific application which spurred much of our work was the need for high-precision inspection and analysis of plankton sizes, distribution and species identification. To this end we have developed a subsea holographic camera (HoloMar) for recording of plankton and other marine organisms in situ in their natural environment. This camera is unique in that it is able to record simultaneous in-line and off-axis holograms to cover a range of size of marine organisms from a few microns to tens of millimetres and at concentrations from a few particles per cubic centimetre to dense aggregates. Holograms of aquatic systems of up to 50000 cm3 volume (off-axis) and 9500 cm3 (in-line), have been recorded in situ, using a pulsed laser (Q-switched, frequency-doubled Nd-YAG, 532 nm). The use of a pulsed laser effectively \\\"freezes\\\" the scene at a given instant. Although the recording of the holograms takes place in water, replay of the image is carried out in the laboratory in air, using the projected (real) image mode of reconstruction. By precision translation of a computer-controlled video-camera through the replayed image volume and performing \\\"optical sectioning\\\" on the image, individual organisms can be isolated and their size, shape and relative location precisely determined. Image processing algorithms, will allow optimisation of the holographic image together with automated identification of individual species and enumeration of concentrations. The local interactions between different organisms and particles can be observed, recorded and quantitatively determined. Following initial laboratory and observation tank testing, the holo-camera was deployed in a sea loch in the West of Scotland to a depth of 100 m and over 300 holograms recorded. However, the HoloMar camera is physically large and heavy and difficult to deploy. It is also based on the use of photographic emulsions to record the holograms. To overcome some of these difficulties we are now developing a new holographic camera (eHoloCam) based on digital holography. In digital or \\\"eHolography\\\", a hologram is directly electronically recorded onto a CCD or CMOS sensor and then numerically reconstructed by simulation of the optical hologram reconstruction. The immediate advantages of this new camera are compactness, ease-of-use and speed of response, but at the expense of restricted off-axis recording angles and reduced recording volume. In this paper we describe both approaches, the use of holography for analysis of marine organisms and the results obtained in the field. We also describe recent work, using both photo and digital holography, to study the behaviour of sediments in river estuaries and outline future applications of underwater holography.\",\"PeriodicalId\":266048,\"journal\":{\"name\":\"International Conference on Holography, Optical Recording, and Processing of Information\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Holography, Optical Recording, and Processing of Information\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.677172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Holography, Optical Recording, and Processing of Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.677172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

全息技术是一种众所周知的光学技术,它可以提供小粒子在三维空间中的位置和分布的有价值的信息。几年来,我们一直使用全息技术进行高精度海底检测和测量。促使我们开展大量工作的一个具体应用是需要对浮游生物的大小、分布和物种鉴定进行高精度检查和分析。为此,我们开发了海底全息相机(HoloMar),用于记录浮游生物和其他海洋生物在自然环境中的原位。这台相机的独特之处在于,它能够同时记录直线和离轴全息图,以覆盖从几微米到几十毫米的各种大小的海洋生物,浓度从每立方厘米的几个颗粒到密集的聚集体。利用脉冲激光(调q、倍频Nd-YAG, 532 nm),原位记录了容积达50000 cm3(离轴)和9500 cm3(直线)的水生系统全息图。脉冲激光的使用有效地将场景“冻结”在给定的瞬间。虽然全息图的记录是在水中进行的,但图像的重播是在实验室的空气中进行的,使用投影(真实)图像重建模式。通过计算机控制的摄像机通过重放的图像量进行精确转换,并对图像进行“光学切片”,可以分离出单个生物体,并精确确定它们的大小、形状和相对位置。图像处理算法,将允许全息图像的优化与单个物种的自动识别和浓度枚举。不同生物和粒子之间的局部相互作用可以被观察、记录和定量确定。经过最初的实验室和观察箱测试,全息摄像机被部署在苏格兰西部一个100米深的海湖中,记录了300多个全息图。然而,HoloMar相机体积大、重量重,难以部署。它也是基于使用感光乳剂来记录全息图。为了克服这些困难,我们现在正在开发一种基于数字全息的新型全息相机(eholam)。在数字或“电子全息术”中,全息图直接以电子方式记录在CCD或CMOS传感器上,然后通过模拟光学全息图重建进行数字重建。这种新相机的直接优势是紧凑,易于使用和响应速度快,但代价是限制离轴记录角度和减少记录体积。在本文中,我们描述了这两种方法,使用全息术分析海洋生物和在现场获得的结果。我们还描述了最近的工作,使用照片和数字全息术,研究河口沉积物的行为,并概述了水下全息术的未来应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Underwater holography: past and future
Holography is a well-known optical technique which can provide valuable information on the location and distribution of small particles in three-dimensional space. For several years now, we have utilised holography for high-precision subsea inspection and measurement. One specific application which spurred much of our work was the need for high-precision inspection and analysis of plankton sizes, distribution and species identification. To this end we have developed a subsea holographic camera (HoloMar) for recording of plankton and other marine organisms in situ in their natural environment. This camera is unique in that it is able to record simultaneous in-line and off-axis holograms to cover a range of size of marine organisms from a few microns to tens of millimetres and at concentrations from a few particles per cubic centimetre to dense aggregates. Holograms of aquatic systems of up to 50000 cm3 volume (off-axis) and 9500 cm3 (in-line), have been recorded in situ, using a pulsed laser (Q-switched, frequency-doubled Nd-YAG, 532 nm). The use of a pulsed laser effectively "freezes" the scene at a given instant. Although the recording of the holograms takes place in water, replay of the image is carried out in the laboratory in air, using the projected (real) image mode of reconstruction. By precision translation of a computer-controlled video-camera through the replayed image volume and performing "optical sectioning" on the image, individual organisms can be isolated and their size, shape and relative location precisely determined. Image processing algorithms, will allow optimisation of the holographic image together with automated identification of individual species and enumeration of concentrations. The local interactions between different organisms and particles can be observed, recorded and quantitatively determined. Following initial laboratory and observation tank testing, the holo-camera was deployed in a sea loch in the West of Scotland to a depth of 100 m and over 300 holograms recorded. However, the HoloMar camera is physically large and heavy and difficult to deploy. It is also based on the use of photographic emulsions to record the holograms. To overcome some of these difficulties we are now developing a new holographic camera (eHoloCam) based on digital holography. In digital or "eHolography", a hologram is directly electronically recorded onto a CCD or CMOS sensor and then numerically reconstructed by simulation of the optical hologram reconstruction. The immediate advantages of this new camera are compactness, ease-of-use and speed of response, but at the expense of restricted off-axis recording angles and reduced recording volume. In this paper we describe both approaches, the use of holography for analysis of marine organisms and the results obtained in the field. We also describe recent work, using both photo and digital holography, to study the behaviour of sediments in river estuaries and outline future applications of underwater holography.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信