量子查询复杂度与多项式度的指数分离

A. Ambainis, Aleksandrs Belovs
{"title":"量子查询复杂度与多项式度的指数分离","authors":"A. Ambainis, Aleksandrs Belovs","doi":"10.4230/LIPIcs.CCC.2023.24","DOIUrl":null,"url":null,"abstract":"While it is known that there is at most a polynomial separation between quantum query complexity and the polynomial degree for total functions, the precise relationship between the two is not clear for partial functions. In this paper, we demonstrate an exponential separation between exact polynomial degree and approximate quantum query complexity for a partial Boolean function. For an unbounded alphabet size, we have a constant versus polynomial separation.","PeriodicalId":246506,"journal":{"name":"Cybersecurity and Cyberforensics Conference","volume":"260 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Exponential Separation Between Quantum Query Complexity and the Polynomial Degree\",\"authors\":\"A. Ambainis, Aleksandrs Belovs\",\"doi\":\"10.4230/LIPIcs.CCC.2023.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While it is known that there is at most a polynomial separation between quantum query complexity and the polynomial degree for total functions, the precise relationship between the two is not clear for partial functions. In this paper, we demonstrate an exponential separation between exact polynomial degree and approximate quantum query complexity for a partial Boolean function. For an unbounded alphabet size, we have a constant versus polynomial separation.\",\"PeriodicalId\":246506,\"journal\":{\"name\":\"Cybersecurity and Cyberforensics Conference\",\"volume\":\"260 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybersecurity and Cyberforensics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.CCC.2023.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybersecurity and Cyberforensics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CCC.2023.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

众所周知,对于全函数,量子查询复杂度和多项式度之间最多存在多项式分离,而对于部分函数,二者之间的精确关系尚不清楚。本文证明了部分布尔函数的精确多项式度和近似量子查询复杂度之间的指数分离。对于无界的字母大小,我们有一个常数和多项式的分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Exponential Separation Between Quantum Query Complexity and the Polynomial Degree
While it is known that there is at most a polynomial separation between quantum query complexity and the polynomial degree for total functions, the precise relationship between the two is not clear for partial functions. In this paper, we demonstrate an exponential separation between exact polynomial degree and approximate quantum query complexity for a partial Boolean function. For an unbounded alphabet size, we have a constant versus polynomial separation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信