{"title":"一类x波段GaN功率放大器mmic的设计和拓扑考虑","authors":"Ulas Ozipek, Armagan Gurdal, Batuhan Sutbas, Büşra Çankaya Akoğlu, E. Ozbay","doi":"10.1109/mms48040.2019.9157315","DOIUrl":null,"url":null,"abstract":"Transistor selection and power drive ratio considerations are critical in high power amplifier design. This work reports four high power amplifier MMICs operating at X-band, discusses two-stage and three-stage design approaches for various output power and efficiency goals while investigating the trade-off between them. All of the four MMICs are fabricated using NANOTAM's 0.25 μm GaN on SiC technology and measured on-wafer. Experimental results show that the first pair of power amplifiers with drive ratios of 1:4 achieve an output power of 13.2-16 W with power-added efficiency between 36.6-46.8%, while the second group of power amplifiers which have more conservative drive ratios of 2:4 are capable of higher output power between 14-18.1 W with lower power-added efficiency of 32.5-38.2 %, all recorded at 6 dB gain compression.","PeriodicalId":373813,"journal":{"name":"2019 IEEE 19th Mediterranean Microwave Symposium (MMS)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Topology Considerations for a Family of X-Band GaN Power Amplifier MMICs\",\"authors\":\"Ulas Ozipek, Armagan Gurdal, Batuhan Sutbas, Büşra Çankaya Akoğlu, E. Ozbay\",\"doi\":\"10.1109/mms48040.2019.9157315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transistor selection and power drive ratio considerations are critical in high power amplifier design. This work reports four high power amplifier MMICs operating at X-band, discusses two-stage and three-stage design approaches for various output power and efficiency goals while investigating the trade-off between them. All of the four MMICs are fabricated using NANOTAM's 0.25 μm GaN on SiC technology and measured on-wafer. Experimental results show that the first pair of power amplifiers with drive ratios of 1:4 achieve an output power of 13.2-16 W with power-added efficiency between 36.6-46.8%, while the second group of power amplifiers which have more conservative drive ratios of 2:4 are capable of higher output power between 14-18.1 W with lower power-added efficiency of 32.5-38.2 %, all recorded at 6 dB gain compression.\",\"PeriodicalId\":373813,\"journal\":{\"name\":\"2019 IEEE 19th Mediterranean Microwave Symposium (MMS)\",\"volume\":\"146 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 19th Mediterranean Microwave Symposium (MMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mms48040.2019.9157315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 19th Mediterranean Microwave Symposium (MMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mms48040.2019.9157315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
晶体管选择和功率驱动比的考虑是高功率放大器设计的关键。本研究报告了在x波段工作的四种高功率放大器mmic,讨论了针对各种输出功率和效率目标的两级和三级设计方法,同时研究了它们之间的权衡。这四款mmic均采用NANOTAM的0.25 μm GaN on SiC技术制造,并在晶圆上进行测量。实验结果表明,第一组驱动比为1:4的功率放大器输出功率为13.2 ~ 16w,附加功率效率为36.6% ~ 46.8%;第二组驱动比为2:4的功率放大器输出功率较高,输出功率为14 ~ 18.1 W,附加功率效率较低,为32.5 ~ 38.2%,均为6db增益压缩。
Design and Topology Considerations for a Family of X-Band GaN Power Amplifier MMICs
Transistor selection and power drive ratio considerations are critical in high power amplifier design. This work reports four high power amplifier MMICs operating at X-band, discusses two-stage and three-stage design approaches for various output power and efficiency goals while investigating the trade-off between them. All of the four MMICs are fabricated using NANOTAM's 0.25 μm GaN on SiC technology and measured on-wafer. Experimental results show that the first pair of power amplifiers with drive ratios of 1:4 achieve an output power of 13.2-16 W with power-added efficiency between 36.6-46.8%, while the second group of power amplifiers which have more conservative drive ratios of 2:4 are capable of higher output power between 14-18.1 W with lower power-added efficiency of 32.5-38.2 %, all recorded at 6 dB gain compression.