不确定点上的线约束L∞单中心问题

Quan Nguyen, Jingru Zhang
{"title":"不确定点上的线约束L∞单中心问题","authors":"Quan Nguyen, Jingru Zhang","doi":"10.1145/3503047.3503124","DOIUrl":null,"url":null,"abstract":"Problems on uncertain data have attracted significant attention due to the imprecise nature of the measurement. In this paper, we consider the (weighted) L∞ one-center problem on uncertain data with an addition constraint that requires the sought center to be on a line. Given are a set of n (weighted) uncertain points and a line L. Each uncertain point has m possible locations in the plane associated with probabilities. The L∞ one-center aims to compute a point q* on L to minimize the maximum of the expected L∞ distances of all uncertain points to q*. We propose an algorithm to solve this problem in O(mn) time, which is optimal since the input is O(mn).","PeriodicalId":190604,"journal":{"name":"Proceedings of the 3rd International Conference on Advanced Information Science and System","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Line-Constrained L∞ One-Center Problem on Uncertain Points\",\"authors\":\"Quan Nguyen, Jingru Zhang\",\"doi\":\"10.1145/3503047.3503124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Problems on uncertain data have attracted significant attention due to the imprecise nature of the measurement. In this paper, we consider the (weighted) L∞ one-center problem on uncertain data with an addition constraint that requires the sought center to be on a line. Given are a set of n (weighted) uncertain points and a line L. Each uncertain point has m possible locations in the plane associated with probabilities. The L∞ one-center aims to compute a point q* on L to minimize the maximum of the expected L∞ distances of all uncertain points to q*. We propose an algorithm to solve this problem in O(mn) time, which is optimal since the input is O(mn).\",\"PeriodicalId\":190604,\"journal\":{\"name\":\"Proceedings of the 3rd International Conference on Advanced Information Science and System\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Conference on Advanced Information Science and System\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3503047.3503124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Advanced Information Science and System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3503047.3503124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于测量的不精确性,不确定数据的问题引起了人们的极大关注。本文考虑了不确定数据上的(加权)L∞单中心问题,该问题具有一个附加约束,要求所寻中心在一条直线上。给定一组n(加权)不确定点和一条线l,每个不确定点在与概率相关的平面上有m个可能的位置。L∞单中心旨在计算L上的一个点q*,以最小化所有不确定点到q*的期望L∞距离的最大值。我们提出了一种在O(mn)时间内解决该问题的算法,由于输入为O(mn),因此该算法是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Line-Constrained L∞ One-Center Problem on Uncertain Points
Problems on uncertain data have attracted significant attention due to the imprecise nature of the measurement. In this paper, we consider the (weighted) L∞ one-center problem on uncertain data with an addition constraint that requires the sought center to be on a line. Given are a set of n (weighted) uncertain points and a line L. Each uncertain point has m possible locations in the plane associated with probabilities. The L∞ one-center aims to compute a point q* on L to minimize the maximum of the expected L∞ distances of all uncertain points to q*. We propose an algorithm to solve this problem in O(mn) time, which is optimal since the input is O(mn).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信