{"title":"过滤系数关系是什么意思?","authors":"J. Gray, A. S. Smith-Carroll, W. Murray","doi":"10.1109/SSST.2004.1295615","DOIUrl":null,"url":null,"abstract":"There are three commonly used relationships between alpha and beta that are reported in the literature: Kalata, Benedict-Bordner, and continuous white noise. The Kalata relation is obtained from steady state Kalman filter theory assuming zero mean white noise in the position and velocity state equations. The Benedict-Bordner relation is derived based on good noise reduction and good tracking through maneuvers. Both the Kalata and Benedict-Bordner relationships can be derived without any reference to a Kalman filter. The question, given the variety of filter coefficient relationships, is which relationship should be chosen as part of a filter design and why? What does it mean to choose a particular filter coefficient relationship? What is the difference between filter coefficient relationship and a criteria to maximize performance? In this paper, the author tries to give the answer to these questions.","PeriodicalId":309617,"journal":{"name":"Thirty-Sixth Southeastern Symposium on System Theory, 2004. Proceedings of the","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"What do filter coefficient relationships mean?\",\"authors\":\"J. Gray, A. S. Smith-Carroll, W. Murray\",\"doi\":\"10.1109/SSST.2004.1295615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are three commonly used relationships between alpha and beta that are reported in the literature: Kalata, Benedict-Bordner, and continuous white noise. The Kalata relation is obtained from steady state Kalman filter theory assuming zero mean white noise in the position and velocity state equations. The Benedict-Bordner relation is derived based on good noise reduction and good tracking through maneuvers. Both the Kalata and Benedict-Bordner relationships can be derived without any reference to a Kalman filter. The question, given the variety of filter coefficient relationships, is which relationship should be chosen as part of a filter design and why? What does it mean to choose a particular filter coefficient relationship? What is the difference between filter coefficient relationship and a criteria to maximize performance? In this paper, the author tries to give the answer to these questions.\",\"PeriodicalId\":309617,\"journal\":{\"name\":\"Thirty-Sixth Southeastern Symposium on System Theory, 2004. Proceedings of the\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thirty-Sixth Southeastern Symposium on System Theory, 2004. Proceedings of the\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSST.2004.1295615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thirty-Sixth Southeastern Symposium on System Theory, 2004. Proceedings of the","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.2004.1295615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
There are three commonly used relationships between alpha and beta that are reported in the literature: Kalata, Benedict-Bordner, and continuous white noise. The Kalata relation is obtained from steady state Kalman filter theory assuming zero mean white noise in the position and velocity state equations. The Benedict-Bordner relation is derived based on good noise reduction and good tracking through maneuvers. Both the Kalata and Benedict-Bordner relationships can be derived without any reference to a Kalman filter. The question, given the variety of filter coefficient relationships, is which relationship should be chosen as part of a filter design and why? What does it mean to choose a particular filter coefficient relationship? What is the difference between filter coefficient relationship and a criteria to maximize performance? In this paper, the author tries to give the answer to these questions.