{"title":"基于蒙古纳坎回归贝叶斯的剩余使用寿命预测","authors":"Marcelia Mutiarani, Sutawanir Darwis","doi":"10.29313/bcss.v3i1.6134","DOIUrl":null,"url":null,"abstract":"Abstract. Bearing element are prone to failure, which can cause economic losses and even fatalities. Prediction of the remaining age is utilized to see conditions that may occur in order to avoid dissatisfaction. The Bayesian method is a method for estimating parameter distributions that have high accuracy. This thesis aims to apply the estimated parameters of the least squares method and Bayesian regression model to predict Remaining Useful Life (RUL) bearings. The bearing index degradation was obtained using principal components through a dimension reduction process. Time domain features are reduced from the corresponding vibration signals to construct Health Indicators (HI). Bayesian regression index degradation was used to predict RUL. The data used is secondary data on accelerated degradation related to China's XJTU-SY. RUL prediction results were acquired at tp of 60 minutes. For the horizontal direction on the standard deviation feature, RUL prediction values were obtained with KT of 54 minutes and Bayesian of 11 minutes, while for the kurtosis factor feature, RUL prediction values were earned with KT of 46 minutes and Bayesian of 40 minutes. For the vertical direction, the peak value feature with KT is 57 minutes, and Bayesian is 28 minutes. The RUL graph shows that the prediction line has an up or down trend, indicating that predictions using KT bearing degradation are slower than those utilizing Bayesian. It can be concluded that Bayesian predictions are more accurate than KT because, using Bayesian RUL value predictions, the bearing degradation is smaller, meaning that bearing degradation can be predicted more quickly. Maintenance can be carried out immediately to reduce maintenance costs. \nAbstrak. Elemen bearing rentan terhadap kegagalan yang dapat menyebabkan kerugian secara ekonomi bahkan korban jiwa. Prediksi sisa usia digunakan untuk melihat kondisi kelayakan bearing guna menghindari terjadinya kegagalan. Metode Bayesian merupakan metode untuk mengestimasi parameter distribusi yang memiliki akurasi yang tinggi. Skripsi ini bertujuan untuk menerapkan estimasi parameter model regresi metode kuadrat terkecil dan Bayesian pada prediksi Remaining Useful Life (RUL) bearing. Indeks degradasi bearing diperoleh melalui proses reduksi dimensi menggunakan komponen utama. Fitur domain waktu di reduksi dari sinyal vibrasi bearing untuk membangun Health Indicator (HI). Regresi Bayesian indeks degradasi digunakan untuk memprediksi RUL. Data yang digunakan merupakan data sekunder akselerasi degradasi bearing XJTU-SY China. Didapatkan hasil prediksi RUL pada tp sebesar 60 menit, untuk arah horizontal pada fitur standar deviasi didapatkan nilai prediksi RUL dengan KT sebesar 54 menit dan Bayesian sebesar 11 menit sedangkan pada fitur faktor kurtosis didapatkan nilai prediksi RUL dengan KT sebesar 46 menit dan Bayesian sebesar 40 menit. Untuk arah vertikal pada fitur nilai puncak dengan KT sebesar 57 menit dan Bayesian sebesar 28 menit. Dilihat dari grafik RUL garis prediksi memiliki trend naik atau turun yang menunjukkan prediksi menggunakan KT degradasi bearing lebih lambat daripada menggunakan Bayesian. Dapat disimpulkan bahwa prediksi menggunakan Bayesian lebih akurat daripada KT karena menggunakan Bayesian nilai prediksi RUL degradasi bearing lebih kecil, artinya degradasi bearing dapat diprediksi lebih cepat dan dapat segera dilakukan perawatan untuk mereduksi biaya perawatan.","PeriodicalId":337947,"journal":{"name":"Bandung Conference Series: Statistics","volume":"186 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualisasi Prediksi Remaining Useful Life Bearing Menggunakan Regresi Bayesian\",\"authors\":\"Marcelia Mutiarani, Sutawanir Darwis\",\"doi\":\"10.29313/bcss.v3i1.6134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Bearing element are prone to failure, which can cause economic losses and even fatalities. Prediction of the remaining age is utilized to see conditions that may occur in order to avoid dissatisfaction. The Bayesian method is a method for estimating parameter distributions that have high accuracy. This thesis aims to apply the estimated parameters of the least squares method and Bayesian regression model to predict Remaining Useful Life (RUL) bearings. The bearing index degradation was obtained using principal components through a dimension reduction process. Time domain features are reduced from the corresponding vibration signals to construct Health Indicators (HI). Bayesian regression index degradation was used to predict RUL. The data used is secondary data on accelerated degradation related to China's XJTU-SY. RUL prediction results were acquired at tp of 60 minutes. For the horizontal direction on the standard deviation feature, RUL prediction values were obtained with KT of 54 minutes and Bayesian of 11 minutes, while for the kurtosis factor feature, RUL prediction values were earned with KT of 46 minutes and Bayesian of 40 minutes. For the vertical direction, the peak value feature with KT is 57 minutes, and Bayesian is 28 minutes. The RUL graph shows that the prediction line has an up or down trend, indicating that predictions using KT bearing degradation are slower than those utilizing Bayesian. It can be concluded that Bayesian predictions are more accurate than KT because, using Bayesian RUL value predictions, the bearing degradation is smaller, meaning that bearing degradation can be predicted more quickly. Maintenance can be carried out immediately to reduce maintenance costs. \\nAbstrak. Elemen bearing rentan terhadap kegagalan yang dapat menyebabkan kerugian secara ekonomi bahkan korban jiwa. Prediksi sisa usia digunakan untuk melihat kondisi kelayakan bearing guna menghindari terjadinya kegagalan. Metode Bayesian merupakan metode untuk mengestimasi parameter distribusi yang memiliki akurasi yang tinggi. Skripsi ini bertujuan untuk menerapkan estimasi parameter model regresi metode kuadrat terkecil dan Bayesian pada prediksi Remaining Useful Life (RUL) bearing. Indeks degradasi bearing diperoleh melalui proses reduksi dimensi menggunakan komponen utama. Fitur domain waktu di reduksi dari sinyal vibrasi bearing untuk membangun Health Indicator (HI). Regresi Bayesian indeks degradasi digunakan untuk memprediksi RUL. Data yang digunakan merupakan data sekunder akselerasi degradasi bearing XJTU-SY China. Didapatkan hasil prediksi RUL pada tp sebesar 60 menit, untuk arah horizontal pada fitur standar deviasi didapatkan nilai prediksi RUL dengan KT sebesar 54 menit dan Bayesian sebesar 11 menit sedangkan pada fitur faktor kurtosis didapatkan nilai prediksi RUL dengan KT sebesar 46 menit dan Bayesian sebesar 40 menit. Untuk arah vertikal pada fitur nilai puncak dengan KT sebesar 57 menit dan Bayesian sebesar 28 menit. Dilihat dari grafik RUL garis prediksi memiliki trend naik atau turun yang menunjukkan prediksi menggunakan KT degradasi bearing lebih lambat daripada menggunakan Bayesian. Dapat disimpulkan bahwa prediksi menggunakan Bayesian lebih akurat daripada KT karena menggunakan Bayesian nilai prediksi RUL degradasi bearing lebih kecil, artinya degradasi bearing dapat diprediksi lebih cepat dan dapat segera dilakukan perawatan untuk mereduksi biaya perawatan.\",\"PeriodicalId\":337947,\"journal\":{\"name\":\"Bandung Conference Series: Statistics\",\"volume\":\"186 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bandung Conference Series: Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29313/bcss.v3i1.6134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bandung Conference Series: Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29313/bcss.v3i1.6134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
摘要轴承元件容易发生故障,造成经济损失甚至死亡。对剩余年龄的预测是用来观察可能发生的情况,以避免不满意。贝叶斯方法是一种估计参数分布精度较高的方法。本文旨在应用最小二乘法和贝叶斯回归模型的估计参数来预测轴承的剩余使用寿命。通过降维处理,利用主成分得到轴承指标退化。从相应的振动信号中提取时域特征,构建健康指标(HI)。采用贝叶斯回归指数退化法预测RUL。使用的数据是与中国西交大学- sy有关的加速退化的二次数据。RUL预测结果在tp为60分钟时获得。对于标准偏差特征的水平方向,以KT为54分钟,贝叶斯为11分钟获得RUL预测值,而对于峰度因子特征,以KT为46分钟,贝叶斯为40分钟获得RUL预测值。在垂直方向上,峰值特征KT为57分钟,贝叶斯特征为28分钟。RUL图显示预测线有上升或下降趋势,表明使用KT轴承退化的预测比使用贝叶斯的预测慢。可以得出结论,贝叶斯预测比KT更准确,因为使用贝叶斯RUL值预测,轴承退化较小,这意味着轴承退化可以更快地预测。可立即进行维护,降低维护成本。Abstrak。元素轴承rentan terhadap kegagalan yang dapat menyebabkan kerugian secara ekonomi bahkan korban jiwa。Prediksi sisa usia digunakan untuk meliit kondisi kelayakan承载guna menghindari terjadinya kegagalan。方法贝叶斯merupakan方法对参数分布的估计[j]。基于参数估计模型回归方法和贝叶斯模型的轴承剩余使用寿命(RUL)预测。含二聚氰胺的指标降解、加工、降维等。Fitur域waktu di reduksi达sinal振动轴承的成员健康指标(HI)。回归贝叶斯指标的退化研究与应用。数据yang digunakan merupakan数据sekunder akselerasi退化,轴承XJTU-SY中国。Didapatkan hasil prediksi - RUL - dtp - sebesar 60 menmeni, untuk - aah -水平模式模式标准偏差Didapatkan - nili - RUL - dengan - KT - sebesar 54 menmeni -贝叶斯模式模式11 meni - sedangkan - sebesar因子峰度Didapatkan - nili - prediksi - RUL - dengan - KT - sebesar 46 meni -贝叶斯模式40 meni。Untuk - arah -垂直模式模型是由KT - sebesar - 57和贝叶斯- sebesar - 28组成的。Dilihat dari grafik RUL garis prediksi memoriliki trend naik atauturun yang menunjukkan prediksi menggunakan KT退化承载lebih lamat daripada menggunakan贝叶斯。Dapat dispulkan bahwa prediksi menggunakan Bayesian lebih akurat daripada KT karena menggunakan Bayesian nilai prediksi RUL降解bearing lebih kecil, artinya降解bearing Dapat diprediksi lebih cepat, Dapat segera dilakukan perawatan untuk mereduksi biaya perawatan。
Visualisasi Prediksi Remaining Useful Life Bearing Menggunakan Regresi Bayesian
Abstract. Bearing element are prone to failure, which can cause economic losses and even fatalities. Prediction of the remaining age is utilized to see conditions that may occur in order to avoid dissatisfaction. The Bayesian method is a method for estimating parameter distributions that have high accuracy. This thesis aims to apply the estimated parameters of the least squares method and Bayesian regression model to predict Remaining Useful Life (RUL) bearings. The bearing index degradation was obtained using principal components through a dimension reduction process. Time domain features are reduced from the corresponding vibration signals to construct Health Indicators (HI). Bayesian regression index degradation was used to predict RUL. The data used is secondary data on accelerated degradation related to China's XJTU-SY. RUL prediction results were acquired at tp of 60 minutes. For the horizontal direction on the standard deviation feature, RUL prediction values were obtained with KT of 54 minutes and Bayesian of 11 minutes, while for the kurtosis factor feature, RUL prediction values were earned with KT of 46 minutes and Bayesian of 40 minutes. For the vertical direction, the peak value feature with KT is 57 minutes, and Bayesian is 28 minutes. The RUL graph shows that the prediction line has an up or down trend, indicating that predictions using KT bearing degradation are slower than those utilizing Bayesian. It can be concluded that Bayesian predictions are more accurate than KT because, using Bayesian RUL value predictions, the bearing degradation is smaller, meaning that bearing degradation can be predicted more quickly. Maintenance can be carried out immediately to reduce maintenance costs.
Abstrak. Elemen bearing rentan terhadap kegagalan yang dapat menyebabkan kerugian secara ekonomi bahkan korban jiwa. Prediksi sisa usia digunakan untuk melihat kondisi kelayakan bearing guna menghindari terjadinya kegagalan. Metode Bayesian merupakan metode untuk mengestimasi parameter distribusi yang memiliki akurasi yang tinggi. Skripsi ini bertujuan untuk menerapkan estimasi parameter model regresi metode kuadrat terkecil dan Bayesian pada prediksi Remaining Useful Life (RUL) bearing. Indeks degradasi bearing diperoleh melalui proses reduksi dimensi menggunakan komponen utama. Fitur domain waktu di reduksi dari sinyal vibrasi bearing untuk membangun Health Indicator (HI). Regresi Bayesian indeks degradasi digunakan untuk memprediksi RUL. Data yang digunakan merupakan data sekunder akselerasi degradasi bearing XJTU-SY China. Didapatkan hasil prediksi RUL pada tp sebesar 60 menit, untuk arah horizontal pada fitur standar deviasi didapatkan nilai prediksi RUL dengan KT sebesar 54 menit dan Bayesian sebesar 11 menit sedangkan pada fitur faktor kurtosis didapatkan nilai prediksi RUL dengan KT sebesar 46 menit dan Bayesian sebesar 40 menit. Untuk arah vertikal pada fitur nilai puncak dengan KT sebesar 57 menit dan Bayesian sebesar 28 menit. Dilihat dari grafik RUL garis prediksi memiliki trend naik atau turun yang menunjukkan prediksi menggunakan KT degradasi bearing lebih lambat daripada menggunakan Bayesian. Dapat disimpulkan bahwa prediksi menggunakan Bayesian lebih akurat daripada KT karena menggunakan Bayesian nilai prediksi RUL degradasi bearing lebih kecil, artinya degradasi bearing dapat diprediksi lebih cepat dan dapat segera dilakukan perawatan untuk mereduksi biaya perawatan.