使用神经网络和支持向量机(SVM)学习经验

Soumya Arach
{"title":"使用神经网络和支持向量机(SVM)学习经验","authors":"Soumya Arach","doi":"10.17781/P002326","DOIUrl":null,"url":null,"abstract":"This article is part of the global data mining framework, it addresses the theme of learning and classification, to identify the classes to which objects belong from using some descriptive parameters. They are particularly suited to the problem of automated decision-making. In this article we tried to implement three learning techniques, the Support Vector Machine (SVM), the Neural Networks and the Decision Trees. This application study aims to compare the results of these three techniques in terms of respecting the performance of the classification used for the contained objects in the data set ̳‘IRIS‘‘ based on the confusion matrix generated by the software weka, which is the tool used to carry out these learning experiences.","PeriodicalId":211757,"journal":{"name":"International journal of new computer architectures and their applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Experiences Using Neural Networks and Support Vector Machine (SVM)\",\"authors\":\"Soumya Arach\",\"doi\":\"10.17781/P002326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article is part of the global data mining framework, it addresses the theme of learning and classification, to identify the classes to which objects belong from using some descriptive parameters. They are particularly suited to the problem of automated decision-making. In this article we tried to implement three learning techniques, the Support Vector Machine (SVM), the Neural Networks and the Decision Trees. This application study aims to compare the results of these three techniques in terms of respecting the performance of the classification used for the contained objects in the data set ̳‘IRIS‘‘ based on the confusion matrix generated by the software weka, which is the tool used to carry out these learning experiences.\",\"PeriodicalId\":211757,\"journal\":{\"name\":\"International journal of new computer architectures and their applications\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of new computer architectures and their applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17781/P002326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of new computer architectures and their applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17781/P002326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文是全局数据挖掘框架的一部分,它解决了学习和分类的主题,通过使用一些描述性参数来识别对象所属的类。它们特别适合解决自动决策的问题。在本文中,我们尝试实现三种学习技术,支持向量机(SVM),神经网络和决策树。本应用研究的目的是比较这三种技术的结果,在尊重对数据集中包含的对象进行分类的性能方面,基于weka软件生成的混淆矩阵,这是用于进行这些学习经验的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Experiences Using Neural Networks and Support Vector Machine (SVM)
This article is part of the global data mining framework, it addresses the theme of learning and classification, to identify the classes to which objects belong from using some descriptive parameters. They are particularly suited to the problem of automated decision-making. In this article we tried to implement three learning techniques, the Support Vector Machine (SVM), the Neural Networks and the Decision Trees. This application study aims to compare the results of these three techniques in terms of respecting the performance of the classification used for the contained objects in the data set ̳‘IRIS‘‘ based on the confusion matrix generated by the software weka, which is the tool used to carry out these learning experiences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信