大规模MIMO系统中基于变压器的混合可学习非均匀量化CSI反馈

Binggui Zhou, Shaodan Ma, Guanghua Yang
{"title":"大规模MIMO系统中基于变压器的混合可学习非均匀量化CSI反馈","authors":"Binggui Zhou, Shaodan Ma, Guanghua Yang","doi":"10.1109/WOCC58016.2023.10139332","DOIUrl":null,"url":null,"abstract":"In frequency division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems, accurate channel state information (CSI) needs to be acquired via CSI feedback to reap the potential benefits of massive MIMO. However, the large-scale antenna array enlarges the dimension of the CSI matrix to be fed back and thus leads to unaffordable CSI feedback overhead. In addition, the quantization and dequantization processes in CSI feedback unavoidably introduce non-neglectable quantization errors, which greatly restrict the performance of CSI feedback. To this end, in this paper, we propose a Transformer-based CSI feedback method with a hybrid learnable non-uniform quantization method to eliminate quantization errors and improve CSI feedback accuracy with reduced feedback overhead. Experimental results on a public dataset demonstrate that the proposed Transformer-based CSI feedback method can achieve higher CSI feedback accuracy with the help of the hybrid learnable non-uniform quantization method.","PeriodicalId":226792,"journal":{"name":"2023 32nd Wireless and Optical Communications Conference (WOCC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Transformer-based CSI Feedback with Hybrid Learnable Non-Uniform Quantization for Massive MIMO Systems\",\"authors\":\"Binggui Zhou, Shaodan Ma, Guanghua Yang\",\"doi\":\"10.1109/WOCC58016.2023.10139332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In frequency division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems, accurate channel state information (CSI) needs to be acquired via CSI feedback to reap the potential benefits of massive MIMO. However, the large-scale antenna array enlarges the dimension of the CSI matrix to be fed back and thus leads to unaffordable CSI feedback overhead. In addition, the quantization and dequantization processes in CSI feedback unavoidably introduce non-neglectable quantization errors, which greatly restrict the performance of CSI feedback. To this end, in this paper, we propose a Transformer-based CSI feedback method with a hybrid learnable non-uniform quantization method to eliminate quantization errors and improve CSI feedback accuracy with reduced feedback overhead. Experimental results on a public dataset demonstrate that the proposed Transformer-based CSI feedback method can achieve higher CSI feedback accuracy with the help of the hybrid learnable non-uniform quantization method.\",\"PeriodicalId\":226792,\"journal\":{\"name\":\"2023 32nd Wireless and Optical Communications Conference (WOCC)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 32nd Wireless and Optical Communications Conference (WOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WOCC58016.2023.10139332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 32nd Wireless and Optical Communications Conference (WOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOCC58016.2023.10139332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在频分双工(FDD)大规模多输入多输出(MIMO)系统中,需要通过CSI反馈获取准确的信道状态信息(CSI),以获得大规模MIMO的潜在优势。然而,大规模天线阵扩大了需要反馈的CSI矩阵的尺寸,从而导致无法承受的CSI反馈开销。此外,CSI反馈中的量化和去量化过程不可避免地引入了不可忽略的量化误差,极大地限制了CSI反馈的性能。为此,本文提出了一种基于变压器的CSI反馈方法,采用混合可学习非均匀量化方法,消除量化误差,提高CSI反馈精度,减少反馈开销。在公共数据集上的实验结果表明,基于变压器的CSI反馈方法在混合可学习非均匀量化方法的帮助下可以获得更高的CSI反馈精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transformer-based CSI Feedback with Hybrid Learnable Non-Uniform Quantization for Massive MIMO Systems
In frequency division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems, accurate channel state information (CSI) needs to be acquired via CSI feedback to reap the potential benefits of massive MIMO. However, the large-scale antenna array enlarges the dimension of the CSI matrix to be fed back and thus leads to unaffordable CSI feedback overhead. In addition, the quantization and dequantization processes in CSI feedback unavoidably introduce non-neglectable quantization errors, which greatly restrict the performance of CSI feedback. To this end, in this paper, we propose a Transformer-based CSI feedback method with a hybrid learnable non-uniform quantization method to eliminate quantization errors and improve CSI feedback accuracy with reduced feedback overhead. Experimental results on a public dataset demonstrate that the proposed Transformer-based CSI feedback method can achieve higher CSI feedback accuracy with the help of the hybrid learnable non-uniform quantization method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信