权值为整数的无向图中的所有对最短路径

Avi Shoshan, Uri Zwick
{"title":"权值为整数的无向图中的所有对最短路径","authors":"Avi Shoshan, Uri Zwick","doi":"10.1109/SFFCS.1999.814635","DOIUrl":null,"url":null,"abstract":"We show that the all pairs shortest paths (APSP) problem for undirected graphs with integer edge weights taken from the range {1, 2, ..., M} can be solved using only a logarithmic number of distance products of matrices with elements in the range (1, 2, ..., M). As a result, we get an algorithm for the APSP problem in such graphs that runs in O~(Mn/sup /spl omega//) time, where n is the number of vertices in the input graph, M is the largest edge weight in the graph, and /spl omega/<2.376 is the exponent of matrix multiplication. This improves, and also simplifies, an O~(M/sup (/spl omega/+1)/2/n/sup /spl omega//) time algorithm of Galil and Margalit (1997).","PeriodicalId":385047,"journal":{"name":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"142","resultStr":"{\"title\":\"All pairs shortest paths in undirected graphs with integer weights\",\"authors\":\"Avi Shoshan, Uri Zwick\",\"doi\":\"10.1109/SFFCS.1999.814635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the all pairs shortest paths (APSP) problem for undirected graphs with integer edge weights taken from the range {1, 2, ..., M} can be solved using only a logarithmic number of distance products of matrices with elements in the range (1, 2, ..., M). As a result, we get an algorithm for the APSP problem in such graphs that runs in O~(Mn/sup /spl omega//) time, where n is the number of vertices in the input graph, M is the largest edge weight in the graph, and /spl omega/<2.376 is the exponent of matrix multiplication. This improves, and also simplifies, an O~(M/sup (/spl omega/+1)/2/n/sup /spl omega//) time algorithm of Galil and Margalit (1997).\",\"PeriodicalId\":385047,\"journal\":{\"name\":\"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"142\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFFCS.1999.814635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFFCS.1999.814635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 142

摘要

我们证明了无向图的全对最短路径(APSP)问题,其边权取整数,范围为{1,2,…, M}只能用元素在(1,2,…)范围内的矩阵的距离积的对数个数来求解。结果,我们得到了一种求解此类图中APSP问题的算法,其运行时间为O~(Mn/sup /spl omega//),其中n为输入图中顶点数,M为图中最大边权,/spl omega/<2.376为矩阵乘法指数。这改进并简化了Galil和Margalit(1997)的O~(M/sup (/spl ω /+1)/2/n/sup /spl ω //)时间算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
All pairs shortest paths in undirected graphs with integer weights
We show that the all pairs shortest paths (APSP) problem for undirected graphs with integer edge weights taken from the range {1, 2, ..., M} can be solved using only a logarithmic number of distance products of matrices with elements in the range (1, 2, ..., M). As a result, we get an algorithm for the APSP problem in such graphs that runs in O~(Mn/sup /spl omega//) time, where n is the number of vertices in the input graph, M is the largest edge weight in the graph, and /spl omega/<2.376 is the exponent of matrix multiplication. This improves, and also simplifies, an O~(M/sup (/spl omega/+1)/2/n/sup /spl omega//) time algorithm of Galil and Margalit (1997).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信