一种基于遗传算法的迭代学习控制系统优化方法

V. Hatzikos, D. Owens
{"title":"一种基于遗传算法的迭代学习控制系统优化方法","authors":"V. Hatzikos, D. Owens","doi":"10.1109/ROMOCO.2002.1177143","DOIUrl":null,"url":null,"abstract":"In this paper genetic algorithms are proposed as a method to implement optimality based iterative learning control algorithms. The strength of the proposed method is that it can cope with nonlinearities and hard constraints in the problem definition whereas most of the existing algorithms would fail. Simulation examples show that this approach results in fast convergence for linear plants.","PeriodicalId":213750,"journal":{"name":"Proceedings of the Third International Workshop on Robot Motion and Control, 2002. RoMoCo '02.","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A genetic algorithm based optimisation method for iterative learning control systems\",\"authors\":\"V. Hatzikos, D. Owens\",\"doi\":\"10.1109/ROMOCO.2002.1177143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper genetic algorithms are proposed as a method to implement optimality based iterative learning control algorithms. The strength of the proposed method is that it can cope with nonlinearities and hard constraints in the problem definition whereas most of the existing algorithms would fail. Simulation examples show that this approach results in fast convergence for linear plants.\",\"PeriodicalId\":213750,\"journal\":{\"name\":\"Proceedings of the Third International Workshop on Robot Motion and Control, 2002. RoMoCo '02.\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third International Workshop on Robot Motion and Control, 2002. RoMoCo '02.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROMOCO.2002.1177143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third International Workshop on Robot Motion and Control, 2002. RoMoCo '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMOCO.2002.1177143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了遗传算法作为实现基于最优性的迭代学习控制算法的方法。该方法的优点在于能够处理问题定义中的非线性和硬约束,而现有的大多数算法都无法解决问题。仿真实例表明,该方法对线性对象具有较快的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A genetic algorithm based optimisation method for iterative learning control systems
In this paper genetic algorithms are proposed as a method to implement optimality based iterative learning control algorithms. The strength of the proposed method is that it can cope with nonlinearities and hard constraints in the problem definition whereas most of the existing algorithms would fail. Simulation examples show that this approach results in fast convergence for linear plants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信